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1. Why a Booklet?

Against the background that normal saline (0.9% NaCl) solution is the
most frequently used intravenous fluid [361], especially in the perioper-
ative setting [315], a 2003 publication titled “(Ab)normal saline” [315]
warned that “clinicians should be aware of the shortcomings of both
0.9% saline and Hartmann’s solution.” Embarrassingly, less than 50% of
surgeons in 25 UK hospitals knew the sodium concentration of normal
saline after their first year of training [217], and as few as 1% of anes-
thesiologists in their sixth year knew the correct composition of 0.9%
saline and Hartmann’s solution (Ringer’s lactate) [403].

This lack of interest in the composition of intravenous fluids among the
medical profession has for decades been causing substantial problems
in fluid management resulting from clinicians’ failure to differentiate
between the concepts of volume replacement and fluid replacement:
“Fluid is poured into the interstitial space on clinical information
gained from changes in the intravascular space, such as blood pres-
sures, pulse rate, peripheral temperature, urine output, etc. The end
point ... peripheral or pulmonary oedema” [377].

1.1. Why a Second Edition?

A number of new facts have been published since the first edition of
this booklet, putting a new perspective on fluid management – or fluid
and volume replacement therapy to be precise:

� Fluid management in pediatric patients – a particularly vulnerable
patient population – is a matter of heated debate worldwide
because it has been made responsible for numerous deaths in “media
hype” fashion. The one-of-a-kind 2007 appeal to the pharmaceutical
industry, “please provide us with this special perioperative infusion
fluid as it will definitely have the potential of saving lives!” vividly
describes the predicament pediatricians are in [219].
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� The “crux of coagulopathy” is frequently deplored in patients with
massive injuries requiring massive transfusions [16]. Aggressive
management of the “lethal triad” – coagulopathy plus metabolic
acidosis plus hypothermia – therefore has the greatest potential of
reducing mortality in severely injured patients [181].

� Balanced solutions provide greater safety for patients and physicians
alike [416] because they prevent any acidosis and hence any coagu-
lation disorder.

� Blood therapy (hemotherapy), the logical extension of volume
replacement therapy, has shortcomings that mandate substantial
restrictions on the use of packed red cells (PRCs) because balanced
volume replacement therapy is devoid of these deficiencies, as aptly
pointed up in the title of an editorial from 2008: “New blood, old
blood, or no blood?” [3].
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2. Volume Replacement Vs. Fluid Replacement: 
Two Aspects of Fluid Management

Differential intravenous fluid therapy is targeted at EITHER 

� the intravascular fluid volume (IVFV, blood volume) OR

� the extracellular fluid volume (ECFV, extracellular space) OR

� both the extracellular and intracellular fluid volumes.

The composition and discriminate use of intravenous fluids should sole-
ly be dictated by the targeted fluid space, while there appears to be no
merit in differentiating between intraoperative, perioperative, post-
operative, and ICU settings.

Volume replacement aims to replace IVFV loss, and to correct hypo-
volemia in order to maintain hemodynamics and vital signs. This is
achieved with an essentially physiological solution that contains both
colloid osmotic and osmotic components, i.e., a fluid that is both isoon-
cotic and isotonic [411].

Fluid replacement, on the other hand, aims to offset or compensate for
an impending or existing ECFV deficit as a result of cutaneous, enteral,
or renal fluid loss. This is achieved with an essentially physiological
solution that contains all osmotically active components, i.e., an iso-
tonic fluid.

Electrolyte replacement or osmotherapy aims to restore a physiological
total body fluid volume (intracellular fluid volume plus extracellular
fluid volume) when cutaneous, enteral, or renal fluid losses have altered
the composition and/or volume of either or both fluid spaces (ICFV
and/or ECFV).
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The principles of parenteral (intravenous) fluid management are sum-
marized in Table 1. The intravenous fluids cited as examples are charac-
terized as follows:

A colloid solution with a physiological colloid osmotic pressure (COP) is
essentially retained within the intravascular compartment (intravascu-
lar fluid volume), while an isotonic electrolyte solution is distributed in
the entire extracellular space (plasma plus interstitial space), and a
glucose (dextrose) solution distributes in total body water (total body
fluid volume, TBFV).

The qualifier “isotonic in vitro” means that 5% dextrose solution in
water (D5W; see below) has physiological osmolality in vitro, but in vivo
it behaves like pure water because dextrose (glucose) rapidly enters the
intracellular compartment to be metabolized there.

Table 1:

Target compartments of discriminate intravenous fluid management
and typical IV fluids

Use Compartment Composition Typical IV Fluid

Volume IVFV Isooncotic 6% HES 130

Replacement Isotonic in balanced 

Isoionic solution

Fluid ECFV Isotonic Balanced solution

Replacement Isoionic (obsolete: normal 

saline, 

Ringer’s lactate)

E-Lyte or TBFV H2O D5W

Osmotherapy Isotonic in vitro
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3. Why Balanced Solutions?

A balanced electrolyte solution has the physiological electrolyte pat-
tern of plasma in terms of sodium, potassium, calcium, magnesium,
chloride and their relative contributions toward osmolality, and
achieves a physiological acid-base balance with bicarbonate or metab-
olizable anions. Infusion of such a balanced solution is devoid of the
risk of iatrogenic disruptions except for potential volume overload.

Back in 1970, a Letter to the Editor of JAMA, titled “‘Normal’ 0.9% salt
saline is neither ‘normal’ nor physiological” [319], gave the following
definition of a balanced solution: “A balanced multiple electrolyte solu-
tion isotonic with plasma and containing sodium, potassium, calcium,
magnesium, chloride, and dextrose in concentrations physiologically
proportionate to the corresponding plasma constituents would be far
superior as a routine replacement and maintenance therapeutic solu-
tion.” This definition was expanded in 2000 in “Call for a new crystal-
loid fluid” [85], reiterating the old demand for “a solution containing
sodium bicarbonate” [121] because it was clear that “the predominate
physiologic deficit is metabolic acidosis” [253]. Appeals have since been
published [117, 245, 254] along the lines of “We encourage anaesthesi-
ologists to consider the role of fluids in acid-base change,” or “acid
base disorders may be avoided.”

This development of a balanced solution was summarized in 2003 [315]
in these words: “The attempt to find a truly physiological crystalloid
preparation for both scientific and clinical work has been going on for
over three-quarters of a century, and the results have inevitably been a
compromise.” 

However, there has also been opposition to this concept of physiologi-
cal, balanced solutions for volume and/or fluid replacement, i.e., dis-
criminate fluid management using different solutions in an effort to
restore or maintain physiological conditions [88].
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4. What Should Go Into a Balanced Solution?

The physiological electrolyte pattern of plasma should be mimicked as
closely as possible. A balanced solution should reflect the physiological
roles of the sodium, potassium, calcium, and magnesium cations, and
also contain chloride and phosphate anions, and, above all, bicarbon-
ate.

The physiological composition of plasma is described in Table 2, and
compared to two common intravenous (IV) fluids: a colloid (6% HES in
0.9% NaCl) and a crystalloid (Ringer’s lactate).

Table 2:

Composition of plasma and common IV fluids

Plasma 6% HES in Ringer’s
0.9% NaCl lactate

Na+ (mmol/l) 142 154 130
K+ (mmol/l) 4,5 5
Ca2+ (mmol/l) 2,5 1
Mg2+ (mmol/l) 1,25 1
Cl– (mmol/l) 103 154 112
HCO3

– (mmol/l) 24
Lactate– (mmol/l) 1,5 27
Acetate– (mmol/l)
Malate2– (mmol/l)
Colloid (g/l) Albumin: Starch: 60 g/l

30–52 g/l
Proteinate– (mmol/l) 20



Such a balanced solution automatically corrects any electrolyte imbal-
ances in the entire extracellular compartment of the patient. A major
benefit for the physician is that there is no risk of overdosage with this
type of IV fluid – apart from the avoidable risk of volume overload.

4.1. Cations

Sodium has a crucial impact on the extracellular fluid volume (ECFV)
and thus automatically also on the effective circulating (blood) volume
(ECV, BV), or intravascular fluid volume (IVFV). If the sodium concentra-
tion of a balanced solution ranges from 138 to 146 mmol/L, the normal
plasma sodium concentration of 142 mmol/L can be adequately main-
tained.

Potassium is the predominant cation in the intracellular compartment,
and it is electrophysiologically active, especially in cardiac arrhythmias,
and crucial to renal function. The normal plasma potassium concentra-
tion is 4.5 mmol/L; the potassium concentration of a balanced solution
should therefore range from 4 to 5 mmol/L.

Calcium is crucial to neuronal excitability and electromechanical cou-
pling of muscle cells, and it is involved in blood clotting. Magnesium is
needed for neuromuscular stimulation. Normal plasma concentrations
of 2.5 mmol/L (5.0 mEq/L) and 1.25 mmol/L (2.5 mEq/L) should there-
fore be maintained for calcium and magnesium, respectively. 

For special considerations regarding calcium, see “Coagulation and Ion-
ized Calcium.”

4.2. Chloride

Similarly to the sodium cation, chloride is the most important anion in
the extracellular space (ECS).

Chloride accounts for one-third of all extracellular osmotically active
particles and, after sodium, is the second most important determinant

13
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of the volume of the ECS. It is also responsible for setting the
membrane potential. The normal chloride concentration in plasma is
103 mmol/L. Ideally, a balanced solution should therefore have a chlo-
ride concentration ranging from 100 to 106 mmol/L, but this is difficult
to achieve in practice.

Compare this to the sodium and chloride concentrations of “normal”
(so-called physiological) saline (0.9 g/dL): 154 mmol/L Na+ and 
154 mmol/L Cl–. These concentrations are much too high. Ringer’s lac-
tate (RL) solution contains too little sodium (130 mmol/L) and too
much chloride (112 mmol/L).

Are there any arguments against infusing a too-high chloride concen-
tration?

Indeed there are, as emerges from various animal studies [192, 303,
404, 405].

An increase in the ECS chloride concentration, but not an increase in the ECS
sodium concentration, causes specifically renal vasoconstriction and a decrease
in the glomerular filtration rate (GFR), or diuresis. An increase in the plasma chlo-
ride concentration by 12 mmol/L (to 115 mmol/L) leads to an increase in renal
vascular resistance by as much as 35%, a decrease in GFR by 20%, and a drop in
blood pressure as a result of an acute and chronic decrease in plasma renin activ-
ity. Induction of hyperchloremia requires the infusion of substantial volumes of a
hyperchloremic infusion fluid, as demonstrated by the following example: When a
75-kg individual (ECFV, 15 L) is infused with 5 L of normal saline (154 mmol/L Cl–),
the plasma chloride concentration will increase from 103 mmol/L to 116 mmol/L,
assuming that none of the infused volume is excreted during the infusion.

This problem has also been demonstrated in humans [89].

Following infusion of 2 L of 0.9% NaCl solution, the hematocrit
decreased by 10% (as little as 20% of the infused volume remained in
the IVFV), the plasma chloride concentration increased predictably to
108 mmol/L, and the fluid balance of the supine subjects took about 
2 days to normalize because the renin-aldosterone system was sup-
pressed to approximately 60% for 2 days.
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These findings on hyperchloremia have recently raised concern that the intraoper-
ative use of hyperchloremic solutions (0.9% NaCl solution or normal saline (NS)
used as a carrier solution for colloids) may trigger dysfunction of the transplanted
kidney in renal transplant recipients [282]. This concern was subsequently dis-
pelled by kidney function tests post-transplantation; Ringer’s lactate proved to be
better than NS in that the number of cases with acidosis was reduced from 31%
to 0% of patients, and hyperchloremia was reduced from 111 to 106 mmol/L [283].

4.3. Bicarbonate and Dilutional Acidosis

Infusion fluids that do not contain the physiological buffer base bicar-
bonate – i.e., all of the IV fluids that are currently available worldwide
– produce dilutional acidosis in the patient because infusion of such a
solution dilutes (reduces) the HCO3

– concentration (buffer base) of the
entire extracellular compartment, while the partial pressure of CO2
(buffer acid) remains constant. Dilution may be isovolemic (normo-
volemic), i.e., HCO3

– is lost along with the blood, and the blood or
extracellular fluid volume is restored to normal with a solution that is
free of HCO3

–, or the ECFV is expanded with a bicarbonate-free solution
to produce hypervolemia.

Dilutional acidosis was first described in qualitative terms in vivo in
1948 [346]: A decrease in arterial pH to 7.20 was observed in a dog
model after infusion of 1,500 mL of 0.9% NaCl solution in 5 minutes,
while no such effect was observed in dogs infused with the same vol-
ume of a solution containing 30 mmol/L of NaHCO3. In 1966, Asano et
al. [17], in another dog study, infused 3.5 mL/kg/min of 0.9% NaCl, 5%
dextrose, or 5% mannitol solution for 25 minutes and produced similar
dilutional acidosis which, therefore, was solely due to HCO3

– dilution,
rather than to chloride delivery.

In a clinical setting, dilutional acidosis only occurs at large dilution vol-
umes: Normovolemic hemodilution with gelatin solution reduces the
Hb concentration from 11 to 6 g/dL and base excess (BE) by 6 mmol/L
with no lactate increase that would lead to tissue hypoxia [349].
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In summary, dilutional acidosis is predictable and defined as an iatro-
genic disruption brought on by bicarbonate dilution in the entire extra-
cellular space which may be associated with hyperchloremia or
hypochloremia depending on whether dilution was produced by infu-
sion of a hyperchloremic or hypochloremic solution [206]. 

The interpretation of dilutional acidosis being simply the result of
bicarbonate dilution in the entire ECFV keeps being negated [264].
Therefore a chloride balance and, later on, a bicarbonate balance is pre-
sented here to establish that this interpretation is, in fact, correct.
Attempts to deduce a BE decrease of 0.4 mmol/L from a chloride supply
of 1 mmol/kg of body weight [281] have failed, as have attempts to
establish a correlation between an increase in chloride and a decrease
in BE, since it was erroneously presupposed that chloride distributes in
total body water [353]. When doing a careful balance, however – i.e.,
chloride intake minus urinary chloride excretion – chloride intake (from
various infusion fluids) correlates with the resulting decrease in BE; this
applies to both dilutional acidosis and hyperchloremia [396].

Using 4 examples, demonstrated, in quantitative terms, how easy it is
to intraoperatively produce iatrogenic hyperchloremia plus dilutional
acidosis with IV fluids with different chloride concentrations (0.9%
NaCl containing 154 mmol/L of chloride and Ringer’s lactate containing
112 mmol/L of chloride).

In the first case [406], the ECFV was diluted by 29% within a good 3 hours (4.1 L
of HES in 0.9% NaCl plus 0.9% NaCl, urine output 0.2 L) or by 23% (3.7 L of
Ringer’s lactate, urine output 0.3 L); in the second case [41], the ECFV was dilut-
ed by 35% in a little under 2 hours (5.7 L of 0.9% NaCl, urine output 0.8 L) or by
26% (5.4 L of Ringer’s lactate, urine output 1.2 L); in the third case [367], the
observed dilution was 37% in 5 hours with 5.1 L of 0.9% NaCl (urine output 
0.6 L) or 36% with 5.1 L of Ringer’s lactate (urine output 0.5 L); in the fourth case
[395], the dilution was 36% within approximately 5 hours with 7.0 L of 0.9%
NaCl (urine output 1.2 L) or 36% with 6.9 L of Ringer’s lactate (urine output 
1.0 L). The concentration changes rather than the absolute values were used in
the two latter cases.
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The simple balance of the ECFV (20% of body weight) chloride concen-
tration based on a normal reference value of 103 mmol/L shows a good
correlation between calculated and author-measured chloride concen-
trations (Figure 1). The following model calculation (mmol/L) is given as
an example: 15 L of ECFV with 103 + 5 L with 154 (0.9% NaCl) yields
20 L with 115.8. This hyperchloremia demonstrates overhydration,
which equally manifests as dilutional acidosis via the change in HCO3

–

concentration (see below).

Figure 1: Four typical clinical examples [41, 367, 395, 406] of over-
hydration as a result of intraoperative dilution of the ECFV
with IV fluids of different chloride concentrations (0.9% NaCl
and Ringer’s lactate).
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4.4. Metabolizable Anions

Dilutional acidosis can be prevented by the use of adequate concentra-
tions of metabolizable anions to replace HCO3

–.

The following anions of organic acids are used as metabolizable bases:
acetate (acetic acid), lactate (lactic acid), gluconate (gluconic acid),
malate or hydrogen malate (malic acid), and citrate (citric acid). Con-
suming H+ ions and oxygen in the process, these anions are metabo-
lized in the intact liver (mainly lactate) or in muscle (mainly acetate
and malate) to replace HCO3

–. At pH 7.40, carbonic acid (H2CO3) is the
only H+ ion source of the body (while supplied at a low concentration of
1.2 mmol/L, H2CO3 can be synthesized freely from CO2 + H2O). HCO3

– is
therefore released in equimolar amounts. For every mole of acetate,
gluconate, or lactate oxidized, one mole of bicarbonate is produced,
while for every mole of malate or citrate oxidized, 2 or 3 moles of bicar-
bonate are produced, respectively. This is illustrated in Figure 2 on the
example of acetate.

Figure 2: Synthesis of bicarbonate from metabolizable anions illustrated
on the example of acetate.

CH3-COONa

CH3-COO- + Na+
��

CO2 + H2O

H2CO3

HCO3
– + H+          CH3-COO-

Bicarbonate

��

�

CH3-COOH
Acetic acid

CO2 + H2O

�       �

�
Na+

HCO3
–
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If an infusion fluid contained 24 mmol/L of one of these anion species for
replacement of bicarbonate, infusion of 1 L of that solution would result
in the production of 24 mmol/L of bicarbonate (physiological concentra-
tion) from acetate, gluconate, or lactate; 48 mmol/L from malate; or 
72 mmol/L from citrate. The two latter metabolizable anions would thus
produce excessively high, unphysiological bicarbonate concentrations.

If an infusion fluid contains metabolizable anions in concentrations
exceeding the lack of bicarbonate, infusion-induced alkalosis is a likely
consequence. Metabolic alkalosis is always iatrogenic.

In surgery, posttraumatic alkalosis is considered iatrogenic [227]: Of
1,414 critically ill patients, 12.5% had an arterial pH greater than 7.55.
Alkalosis is the most frequent disruption of the acid-base balance: As
many as 66% of all disturbances of the acid-base balance are metabolic
or combined metabolic and respiratory iatrogenic alkaloses. At pH 7.58 or
higher, mortality among these patients is approximately 50% [409].

4.4.1. Acetate

Normal Plasma Acetate Concentration

The normal plasma acetate concentration is very low and has been
reported to range from 0.06 to 0.2 mmol/L [22, 83, 111, 203, 224, 318].
Patients undergoing acetate hemodialysis have had plasma acetate lev-
els as high as 6.5 mmol/L [204]. As acetate is also an ethanol meta-
bolite, the plasma acetate concentration may increase to 0.8 mmol/L
during administration of ethanol [22, 111, 176, 196, 223].



Acetate Metabolism
Any metabolic pathway must be electroneutral on balance. Acetate
(the base the patient is infused with) is therefore oxidized in the form
of acetic acid (after taking up H+). Two moles of O2 are required per
mole of acetic acid. The chemical equation for the reaction of sodium
acetate with oxygen is:

CH3-COONa  +  2 O2 CO2 +   H2O  +  NaHCO3

Two important conclusions can be drawn from this equation:

1. For every mole of acetate oxidized, one mole of bicarbonate is pro-
duced; this is the expected effect of acetate for HCO3

– replacement
or alkalization.

2. For every two moles of O2 consumed, only one mole of CO2 is pro-
duced. This is a surprising “side” effect in that the respiratory quo-
tient (RQ) for acetate is only 0.5 [289]. Compared with glucose
(dextrose), which has an RQ of 1.0, this means that the metabolism
of acetate causes only half the inhaled O2 to be exhaled as CO2.

Acetate to Replace HCO3
–

The alkalizing effect of acetate was first described in 1910 in the treat-
ment of cholera [50, 93] and first used in hemodialysis in 1964 [257].
Compared to HCO3

–, acetate has practically the same effect [49, 188,
215, 270, 318].

Other uses of acetate for alkalization include correction of acidosis in preterm
infants [97], treatment of diabetic lactic acidosis [145], urinary alkalization,
reduction of calcium excretion [29], and, unlike lactate, clinical situations in
which hepatic metabolism is more or less impaired, such as in hemorrhagic shock
[203], dialysis patients with severe hepatic impairment [98], or during hepatecto-
my [275].

1

1
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In-depth studies of acetate metabolism, frequently using C14 acetate, have pro-
duced a number of important findings.

1. Acetate has a pivotal role in carbohydrate and lipid metabolism. Its effect(s)
can therefore be summarized as follows: “Acetate replaces fat as an oxidative
fuel, without effecting glucose oxidation“ [6]; all tissues have the enzymes
required for acetate metabolism, especially the liver, muscle, myocardium, and
renal cortex [189, 202]; acetate rarely produces a slight increase in glucose
concentration [184].
Myocardial metabolism also shows significant changes in response to acetate
production from ethanol administered to volunteers: Oxidation of free fatty
acids (FFA) decreased from approximately 50% to 25%, and lactate and
acetate turnover increased from approximately 5% to 20% [214]. Following
direct administration of acetate, myocardial glucose oxidation decreased from
75% to practically 0%, as did FFA oxidation, with 80% of metabolic activity
occurring via acetate oxidation [308]. The heart (300 g) as a whole oxidizes
approximately 2 mmol/min [22].

2. The alkalizing effect of acetate is very rapid (healthy volunteer study): The
HCO3

– concentration increased as early as 15 minutes after the start of an
acetate infusion [270]; 90% of the infused amount of acetate was oxidized in
a matter of minutes [6, 7, 76]; and 60% to 80% of the administered acetate
was eliminated as CO2 via the lungs within 1 to 12 hours [76, 202, 265].

3. Acetate is metabolized significantly faster compared to lactate [15, 139, 188].

4. Acetate metabolism is unchanged in patients with diabetes: There was no
change in glucose or insulin concentrations [6, 7, 141].

5. Although the renal threshold has been reported to be practically 0 mmol/L, less
than 10% of an acetate dose is eliminated via the kidneys [154, 318]. However,
rapid acetate administration to healthy volunteers (300 mmol within 1 hour in
a 75-kg individual) may, as a result of alkalization, lead to substantial HCO3

–

elimination via the kidneys, similar to that observed for a control HCO3
– infu-

sion [318].

6. Acetate turnover has shown no age-related differences [354].

7. Acetate is a fuel delivering 209 kcal/mol [355].

Acetate thus has a number of significant advantages over other metab-
olizable anions.
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Clinically Relevant Observations During Acetate Use
Maximum turnover of acetate, used mainly in hemodialysis, has been
reported to be approximately 350 mmol/hour in a 75-kg patient [203],
and this quantity is substantially greater than the amount of acetate
delivered when infusing a patient with 1 liter of a solution containing 
24 mmol/L. The RQ theoretically predicted for acetate (0.5) has been doc-
umented experimentally: the lowest measured RQ was 0.62 [294]. The
hypoventilation accompanied by arterial hypoxia observed as a result of
the decrease in the RQ during acetate hemodialysis became only relevant
at very high acetate concentrations (3–6 mmol/L) and did not necessitate
any therapeutic intervention.

There is conflicting evidence in the literature regarding the question of
whether or not acetate increases total oxygen consumption. This ques-
tion can therefore not be answered. However, an increase in O2 consump-
tion in response to acetate administration, if any, would be expected to
be moderate because acetate oxidation is not additive to total substrate
turnover, but acetate metabolism rather competitively displaces other
metabolites.

Does Acetate Have Side Effects?
Again when used in hemodialysis, acetate has been associated with
vasodilator effects: “Acetate exerts a depressant action on the cardio-
vascular system” [5].

There have been reports of transient drops in blood pressure [155, 166, 187, 233],
constant blood pressure readings [187, 204, 213, 297], or blood pressure increas-
es [280, 333] after the administration of acetate.

It is generally recognized that the local administration of high concentrations of
acetate, citrate, malate, fumarate, or succinate, but not of lactate or HCO3

–, pro-
duces vasodilation [116, 293] which is presumably mediated by the release of
adenosine from tissues [359].
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Practically all studies have described decreases in systemic vascular
resistance, ranging from 10% to 65% as a function of acetate dose [74,
166, 196, 213, 280, 333], offset in many instances by a commensurate
increase in cardiac output though.

The observation that the coronary arteries also benefit from vasodila-
tion [213, 260] suggests that acetate may also have a “possible
inotropic action” [333]. A review of the conflicting evidence available
for the potential positive inotropic activity of acetate in humans 
(4 studies supporting such an activity, 2 studies suggesting otherwise)
cannot resolve this issue either [280].

What is clear though is that these effects are only observed when high acetate
doses are administered at high rates. In healthy volunteers, 85 mmol of acetate
administered within 20 minutes [280] or 150 mmol administered within 60 min-
utes [6], up to a plasma acetate concentration of 6 mmol/L [204], produced no
blood pressure drop; nor did similar doses in dogs [187, 333]. Too-rapid infusion
of [PPL / PPS], also with a high acetate concentration, also produced a transient
drop in blood pressure [290].

In summary, this cardiocirculatory side effect is likely to occur only with
rapid administration of high acetate doses – in a range of 50 to 
100 mmol of acetate within one hour –, if at all, and this would hardly
appear possible with an IV fluid that contains 24 mmol/L of acetate.



4.4.2. Lactate

Lactate has, for decades, been the most popular metabolizable anion in
a wide variety of infusion fluids, in particular Ringer’s lactate (RL, Hart-
mann’s solution). The chemical equation for the oxidative breakdown of
lactate to produce bicarbonate is:

CH3-CHOH-COONa + 3 O2 2 CO2 + 2 H2O + NaHCO3

A number of considerations argue against the use of lactate, especially
in patients with preexisting elevated plasma lactate concentrations
(lactic acidosis):
Lactic acidosis is a manifestation of disproportionate tissue lactate for-
mation in relation to potentially impaired hepatic lactate metabolism.
It makes no sense to further increase oxygen consumption in a patient
with preexisting tissue hypoxia. In a patient with lactic acidosis, RL will
invariably exacerbate preexisting acidosis by producing dilutional aci-
dosis; unnecessarily increase the risk of rebound alkalosis; and preclude
the diagnostic use of lactate as an important marker of hypoxia.
These considerations will be discussed in more detail below, making
comparisons with acetate.

4.4.2.1. Lactate Metabolism

At the basal metabolic rate (BMR), the myocardium, muscle, brain,
intestinal mucosa, and red blood cells produce approximately 1 mmol
of lactate/kg/hr, and more than half of it is eliminated by the liver [43,
76, 197].

At the BMR, gluconeogenesis accounts for approximately 20% and oxi-
dation for approximately 80% of lactate metabolism [43]. 

1
1
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Intrahepatic gluconeogenesis ceases once the pH falls below 7.1, or a BE of 
–15 mmol/L [31, 147]. Incipient hepatic dysfunction (increases in bilirubin and
SGOT) quickly results in lactate concentrations of 8 mmol/L, which are associat-
ed with very high mortality [82]. 

Compared to acetate, lactate infusion is characterized by a relatively slow onset
of alkalization and, therefore, has been called “delayed HCO3

– infusion“ [62]. Peak
lactate turnover has been reported to be approximately 450 mmol/hr [73]. 

When lactate is supplied exogenously, however, gluconeogenesis is the
principal metabolic pathway for lactate [59]: up to 70% of exogenous
lactate is utilized for gluconeogenesis [300]. Plasma lactate levels as
low as 1–3 mmol/L triple the rate of gluconeogenesis, i.e., glucose syn-
thesis from exogenously supplied lactate [173]. Healthy volunteers
experience practically no increase in glucose concentrations following
lactate infusion [4, 59, 173], while patients show significant intraoper-
ative increases [10]. And in diabetics, intraoperative glucose levels even
double following administration of RL [370].

The situation is a substantially different one in shock patients.

When lactate production and glucose turnover more than double [317],
e.g., in sepsis patients with mainly hepatic (gluconeogenesis) disruption
of lactate clearance [211, 212], the additional infusion of lactate is, of
course, contraindicated, since as little as 15% of exogenous lactate is
utilized for gluconeogenesis in these circumstances [317]. The quanti-
tation of this disrupted lactate clearance after lactate infusion in sepsis
patients with plasma lactate concentrations of less than 3 mmol/L has
high predictive power for subsequent mortality among these patients
[212]. The correlation between lactate supply and glucose metabolism
is mentioned because tight control of physiological glucose concentra-
tions may have an impact on mortality among ICU patients [411].
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Tight control of plasma glucose concentrations within a range of 80–110 mg/dL
(4.4–6.1 mmol/L) has recently been shown to be associated with lower mortality
in ICU patients, compared to a treatment strategy that permits higher plasma
glucose levels (180–200 mg/dL) [381]. Further data analysis revealed that the
observed favorable effect on the incidence of organ failure was primarily only
due to tight control of plasma glucose rather than to insulin use per se [382].

The D-lactic acidosis issue is not covered here because in Europe only
physiological L lactate is used, whereas racemic lactate (D and L) is tra-
ditionally used in the United States [378].

4.4.2.2. Does Lactate Increase Oxygen Consumption?

Oxygen consumption in laboratory animals increases very rapidly after
the administration of lactate [8, 32]. Similarly, healthy volunteers given
a bolus of 330 mmol of lactate showed an increase in O2 consumption
by almost 30%, and this was mainly due to an increase in hepatic
(almost 30%) and muscle oxygen consumption (over 40%) [4].

4.4.2.3. Lactate Clearance

The rate of lactate metabolism – above all hepatic clearance – has
become a major criterion for evaluating the therapeutic management
of critically ill patients [2, 19, 21, 41, 72, 105, 112, 129, 150, 174, 234,
247, 261, 320, 376, 385]: “Changes in lactate concentration can pro-
vide an early and objective evaluation of the patients response to ther-
apy” [385]. 

In terms of prognosis and response to therapy, this applies especially to
septic shock patients [19, 21, 72, 112, 129, 234, 247, 320, 376].
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Lactate concentration in this context always refers to the (higher) plasma lactate
concentration, which, in a few cases, was calculated from the blood lactate con-
centration using a conversion factor of 1.38 (blood with normal hematocrit)
[413].

Figure 3 presents lactate clearance data for (hemorrhagic, cardiac, sep-
tic, traumatic) shock patients from 10 studies (543 patients) [2, 19, 21,
72, 105, 112, 150, 164, 234, 376]. These data demonstrate impressively
that survivors, unlike nonsurvivors, can normalize their lactate concen-
tration within 24 hours. Healthy individuals (e.g., athletes) manage to
reduce a lactate concentration of, say, 12 mmol/L to a normal level of
1.5 mmol/L within approximately 30 minutes.

Some authors have suggested rather hard-and-fast rules for plasma
lactate normalization: 

For myocardial infarction patients [150], the following observation has
been reported: “no patient survived in whom the arterial plasma lactate
was greater than 5 mmol/l for more than 12 h.”

Trauma, sepsis, and surgical ICU patients have been reported to survive
only if their plasma lactate levels normalize to <2 mmol/L within
12–24 hours [2, 112, 164, 185, 247].

For patients in circulatory shock, fluid management is only successful if
lactate can be lowered within the first two hours [385].

Conversely, the following holds for an increase in plasma lactate con-
centrations:

During cardiopulmonary bypass, an increase by more than 4 mmol/L
predicts subsequent mortality with high sensitivity [271]; during
congenital heart defect surgery in children (<1 yr), an increase by 
0.75 mmol/L/hr is associated with subsequent death [56]; if a value
greater than 9 mmol/L is measured one hour after successful cardiopul-
monary resuscitation (CPR), survival is highly unlikely [401].
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4.4.2.4. Lactate and Mortality

Plasma lactate has similarly high predictive power to base excess for
mortality in patients with various forms of shock including cardiac,
hemorrhagic, and septic shock: Subsequent mortality is approximately
50% if plasma lactate exceeds 5 to 8 mmol/L in the first 24 to 48 hours
of shock [46, 49, 150, 170, 179, 297, 298, 387, 398, 400].

Data from 11 studies involving a total of 7,326 patients are summarized
in Figure 4 [19, 46, 47, 247, 256, 298, 320, 321, 387, 398, 401]: A base-
line plasma lactate concentration of approximately 6 mmol/L predicts
50% mortality for patients with cardiac, hemorrhagic or septic shock.
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Figure 3: Lactate clearance in shock patients captured in terms of plas-
ma lactate concentration (mmol/L) over time (hrs); survivors
(white), nonsurvivors (red), and healthy individuals (green) 
[2, 19, 21, 72, 105, 112, 150, 164, 234, 376].
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The baseline plasma lactate concentration in a wide variety of patient
populations including surgical ICU patients, trauma patients, septic
shock patients, and children undergoing cardiac surgery, can be used to
very clearly differentiate between survivors and nonsurvivors: a value of
5 (2–8) mmol/L for survivors and of 8 (4–13) mmol/L for nonsurvivors
[21, 56, 57, 234, 240, 247, 348].

4.4.2.5. Ringer’s Lactate and Lactate Assay

Many clinicians apparently are not aware that the use of lactate-con-
taining infusion fluids (such as RL) or blood products (such as packed
red cells) and the diagnostic use of lactate as a marker of hypoxia are
mutually exclusive [82]. Unfortunately, this error tends to be re-pub-
lished time and time again [2, 49, 66, 158]. It is medical nonsense to
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398, 401].
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infuse up to 25 L [55] or even 50 L of RL within 24 hours [157] and at
the same time attempt to establish a correlation between lactate con-
centration and oxygen deficiency: “Lactate levels seem to correlate
with oxygen failure and death.” [158].

4.4.2.6. Specific Issues with Lactate

The potential correlation between plasma lactate and panic attacks and
the increase in lactate concentrations after hyperventilation and
epileptic seizures are beyond the scope of this booklet.

Calcium binding by lactate will be discussed later.

4.4.3. Advantages of Acetate Over Lactate

Table 3 summarizes obvious advantages of acetate over lactate for use
as a metabolizable anion.

Effect Acetate Lactate

Metabolism
HCO3

– production ~15 min Delayed
O2 consumption � �

Respiratory quotient (RQ) 0.5 0.67
Metabol. organs Normal All Liver

Shock All No

Gluconeogenesis (liver) � �

Hyperglycemia (diabetes) � �

Binding of ionized calcium No Yes

Lactate as hypoxia marker Yes No

Table 3:

Advantages of acetate over lactate
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4.4.4. Malate

The effects of malate are less well documented than those of acetate.
At a patient pH of 7.40, all of malate is present as a divalent anion
(malate2–) so that for every mole of malate oxidized, two moles of
bicarbonate (HCO3

–) are produced [419]. The resultant alkalizing effect
is significantly slower than that of acetate – which may be quite desir-
able when using malate in combination with acetate.

4.4.5. Gluconate

Compared with HCO3
–, lactate or acetate, the alkalizing effect of glu-

conate is almost zero [188, 276]; therefore, it cannot be used as a
metabolizable anion.

4.4.6. Citrate

Citrate is another potential metabolizable anion because it has a sub-
stantial alkalizing effect (3 moles of H+ are consumed for every mole of
citrate) and is metabolized in practically all organs [162], especially in
the liver [195].

In hemofiltration, citrate is used for anticoagulation and replacement
of HCO3

– [9, 104, 182]; undesirable alkalosis may occur with PPF
administration [307], during plasmapheresis [237, 295], or following
massive transfusions [216]. The maximum dose of citrate is very limited
because of its potential to bind calcium; its LD50 is as low as 
1.75 mmol/kg of body weight [131].

Conclusion: IV fluids without HCO3
–, such as NS, produce dilutional

acidosis which can be prevented by the use of metabolizable anions
in appropriate concentrations. Acetate and malate are clearly supe-
rior to lactate, and gluconate has no alkalizing effect. The use of
lactate-containing solutions, such as Ringer’s lactate, is strongly dis-
couraged.
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5. Isotonicity

Any infusion solution used in fluid management should meet this
requirement [411]: It should be isotonic to plasma, i.e., its (actual)
osmolality determined by cryoscopy (freezing point depression, FPD)
should be in a range from 280 to 300 mosmol/kg H2O; isotonicity
should be labeled in terms of its calculated actual osmolality
(mosmol/kg H2O) in vivo. This requirement is currently met by no manu-
facturer; what they usually do is report only the theoretical osmolarity
(mosmol/L), as determined by the addition of all osmotically active
species contained in a solution. 

In theory, consideration might be given to replacing the calculated osmolality
values with cryoscopic data, determined by FPD. Two considerations argue
against this. First, measured osmolality describes the values obtained in vitro
(laboratory) rather than those encountered in vivo (patient) (see below). Second,
preliminary (unpublished) results show that the mean deviation of less than 1%
between measured and calculated osmolality observed for the three classical
products (plasma, NS, and 5% glucose) is not attained by HES solutions (overes-
timated by almost 3% on average). Until this issue has been resolved, calculated
in vivo osmolality should be given preference over measured values.

Reporting the calculated in vivo osmolality (mosmol/kg H2O) on the IV
fluid label is therefore the better choice when it comes to providing the
best possible information for health care providers; an infusion fluid is
“isotonic” if its calculated in vivo osmolality ranges between 280 and
300 mosmol/kg H2O [411].

5.1. Osmolarity (mosmol/L) and Osmolality (mosmol/kg H2O)

Different body compartments are in osmotic equilibrium if the number
of osmotically active particles (osmoles) within the available water
space is balanced. For example, freely permeable glucose is in equilibri-
um between erythrocytes (water content, 71%) and plasma (water
content, 94%) if the concentrations in the available water space are
equal. Making reference to one kilogram of water, i.e., osmolality
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(mosmol/kg H2O), is therefore required for physiological considerations,
since reference to one liter of erythrocytes or one liter of plasma would
result in very different concentrations despite there being an equilibri-
um. Indeed, experimental data have demonstrated that all body fluids,
including erythrocytes (ICFV, ECFV), never show deviations in osmolali-
ty from a subject’s plasma osmolality by more than 1 mosmol/kg H2O
[149].

The differences between osmolarity and osmolality and between theo-
retical and actual are now demonstrated on the example of plasma.

The theoretical osmolarity of plasma of 291 mosmol/L can be calculated by adding
all osmotically active species relative to 1 liter of plasma. Given a water content
of 94%, this converts into a theoretical osmolality of 310 mosmol/kg H2O. This
value is greater because the available water space is 6% smaller. As electrolytes,
especially sodium and chloride, are osmotically active only in part – 92.6% for
sodium and chloride (osmotic coefficient, 0.926) [123] – the actual (real) osmo-
lality is lower: 287 mosmol/kg H2O. Comparison with the measured actual normal
value of plasma of 288 mosmol/kg H2O reveals the surprising finding that plasma
osmolality and plasma osmolarity happen to be virtually identical by chance. This
coincidence is presumably responsible for some of the confusion in the medical
literature. Actual osmolality (rather than osmolarity) can be measured via freez-
ing point depression (FPD).

This deduction is shown in Table 4 for plasma, along with a comparison
with Ringer’s acetate solution and 0.9% NaCl solution. Given its
theoretical osmolarity of 308 mosmol/L (154 mosmol/L of sodium and
154 mosmol/L of chloride) and its osmotic coefficient of 0.926, NS has
an osmolality of 286 mosmol/kg H2O.

Osmolality is usually measured via freezing point depression (FPD),
using two points of reference: distilled water (0 mosmol/kg H2O) with
an FPD of 0°C and 1 osmolal mannitol solution (1.000 mosmol/kg H2O)
with an FPD of –1.86°C. 
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Table 4:

Osmolarity vs. osmolality

Plasma Ringer’s 0.9 %
Electrolytes Osmotically acetate NaCl

(mmol/l) active species (mmol/l) (mmol/l)
(mosmol/l)

Na+ 142 142 130 154

K+ 4,5 4,5 5

Ca2+ 2,5 1,3* 1

Mg2+ 1,25 0,7* 1

CL– 103 103 112 154

HCO3
– 24 24

Phosphate2– 1 1

Sulfate2– 0,5 0,5

Organic acids 1,5 1,5 27

Proteinate- 20 1

Glucose 5

Urea 5

� � = 291 � = 276 � = 308

Theoretical osmolarity
(mosmol/l) 291 276 308

Water content (%) 94 99,7 99,7

Theoretical osmolality
(mosmol/kg H2O) 310 276 308

Osmotic coefficient 0,926 0,926 0,926

Actual osmolality 
(mosmol/kg H2O) 287 256 286

Measured 
osmolality**
(mosmol/kg H2O) 288 256 286

* Because of protein binding
**  Freezing point depression
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5.2. Physiological Normal Value of Osmolality

The normal value of the actual osmolality of plasma is 288 ± 5 mosmol/kg H2O
with an SD of only 1.8%; the mean is a weighted mean of cryoscopic
measurements obtained in a total of 181 subjects [126, 148, 291]. If,
for practical considerations, whole blood osmolality is to be measured,
the deviation from the plasma value is not more than 0.5% [399].

This normal value has been confirmed by a number of authors: the report-
ed mean value is 286 ± 0.9 [27] or 290 ± 4.7 [313] or 289 mosmol/kg H2O
[54]. Moreover, a normal range of 285–295 mosmol/kg H2O has been
reported as well [140].

A change in osmolality as a function of age has been demonstrated
[285]: It increases slightly from 288 (at age 20) to 298 mosmol/kg H2O
(at age 65), but early findings suggest that this has no clinical rele-
vance.

5.3. In vivo Vs. in vitro Osmolality 

There may be a difference between the osmolality of an IV fluid meas-
ured in vitro (laboratory) and its effect in vivo (patient). Some authors
have used the term “tonicity" to describe this concept: A hypertonic
solution causes water to leave a cell, while a hypotonic solution causes
the cell to swell.

The simplest example is 5% glucose (dextrose) solution: Theoretically, it
contains 278 mmol = mosmol per liter of solution. Its osmolarity is
therefore 278 mosmol/L. Given a water content of 97% and an osmot-
ic coefficient of 1.013 (clearly different from that of NaCl) [123], 5%
glucose solution has an actual osmolality of 290 mosmol/kg H2O, and
therefore is a clearly isotonic solution, which has been determined in
vitro on a number of occasions. Infusion of this solution, however, has
the same effect as an infusion of pure water, since glucose is rapidly
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metabolized inside tissue cells, leaving the water behind in the extra-
cellular compartment. 

If 5 mosmol/kg H2O of glucose and 5 mosmol/kg H2O of urea were
added to an IV fluid, this would be equivalent to an additional osmolal-
ity of 5 mosmol/kg H2O each, since plasma also contains both of these
components, and both substances are in a concentration equilibrium
with the intracellular compartment.

If an IV fluid contains 24 mmol/L of lactate or acetate as a bicarbonate
substitute, osmolality will be unchanged because intracellular lactate
or acetate metabolism results in the equimolar release of 24 mmol/L of
bicarbonate. This means that the osmolality of this solution remains
unchanged. In other words, the value measured in vitro is equal to the
effect seen in vivo.
If, however, a solution contains, say, 5 mmol/L of malate as a bicarbon-
ate substitute, its osmolality will be increased by 5 mosmol/L after the
malate has been metabolized, since two moles of bicarbonate are
released for each mole of malate. 

5.4. Hypotonic IV Fluids and Intracranial Pressure (ICP)

All body fluids have the same osmotic pressure as plasma, characterized
by the value of osmolality. As a result, infusion of a hypertonic solution
may cause water to move from the intracellular into the extracellular
fluid compartment. Conversely, infusion of a hypotonic solution may
move water into the intracellular space. The latter situation is increas-
ingly being viewed with a critical eye because many infusion fluids used
in clinical practice are hypotonic. Typical examples include Ringer’s lac-
tate and Ringer’s acetate with an osmolality of 256 (rather than 288)
mosmol/kg H2O, possibly leading to water uptake by organs with no
particular consequences.

The brain (CNS), however, is a critical exception.
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The rigidly shaped skull contains three incompressible fluid compart-
ments, two of which – the blood and the cerebrospinal fluid (CSF) – can
be partially shifted outside the skull: brain, 1340 mL (g); blood, 
120 mL; CSF, 140 mL (see Figure 5).

Any volume change in any of these three compartments invariably
results in an identical volume change in another compartment (cerebral
edema, intracerebral hemorrhage, subdural hematoma, tumor, etc).

The compliance of the CNS describes the change in blood and/or CSF
volume in response to a change in ICP, expressed in mL/mmHg. This
means that any, even a minute, increase in CNS volume invariably pro-
duces an increase in ICP and thus a shift of CSF or blood from the skull
and hence a decrease in cerebral blood flow. Compliance decreases

Figure 5: Intracranial compartment responses to a change in plasma
osmolality: A decrease in plasma osmolality by approximately
3%, say, from 288 to 280 mosmol/kg H2O, invariably results in
an increase in brain volume by 3%, causing a decrease in blood
and/or CSF volume by as much as 30%.

Brain 1,340 mL + 40 mL (3%)

Blood 120 mL – 40 mL (–33 %)
or

CSF 140 mL – 40 mL (–29 %)

Total 1,600 mL
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substantially with increasing ICP because the blood or CSF volume
shifts quickly reach their limit.

The normal compliance of the CNS is approximately 0.5 mL/mmHg [335]. This
means that there must be a 2-mmHg ICP increase in response to any 1-mL
increase in CNS volume. This rise in ICP increases disproportionately as the vol-
ume increases further because the compliance of the CNS decreases. A patient
experiencing an increase in ICP to 30 mmHg for longer than a day can hardly sur-
vive without permanent damage [335].

This issue can be illustrated on the example of Ringer’s lactate (RL).

Larger volumes of RL have long been known to produce a transient rise
in ICP [372], but this increase is less pronounced than that observed
after infusion of larger volumes of D5W [20]. Another fact is that the
osmolality of plasma may be reduced by infusing RL [315, 342]; this has
also been demonstrated in healthy volunteers infused with 3.75 L of RL
within 1 hour [407]. The magnitude of the rise in ICP can be predicted
from the reduction of plasma osmolality.

A decrease in osmolality from 288 to 287 mosmol/kg H2O (0.35%) would be
expected to produce an osmotic increase in CNS volume from 1,350 to 1,355 mL
(+0.35% from the influx of water), or an increase by 5 mL, which would be
expected to produce an increase in ICP by 10 mmHg. This value is significantly
smaller than the estimated 19 mmHg increase for every mosmol/L reported in the
literature [336].

This rough estimate still appears to be realistic, as demonstrated by the
data in Figure 6: The mean (large scatter) ICP increase (mmHg) meas-
ured after reduction of plasma osmolality in animal model(s) [165, 177,
342, 392, 420, 421] is 1.5 mmHg for every mosmol/kg H2O reduction in
plasma osmolality.

Measurement of the change in brain water content after reduction of osmolality
by 13 mosmol/L and an 8.1 mmHg increase in ICP [421] produced a similar result:
A 0.5% change in (brain) water content (6.75 mL) would be equivalent to a 13.5
mmHg rise in ICP for a brain compliance of 0.5 mL/mmHg, and this value is quite
comparable to 8.1 mmHg.
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Patients with a hypoosmolality of 240 mosmol/kg H2O will fall into
coma and show a mortality rate of 50% [13].

Conclusion: Infusion of larger volumes of hypotonic solutions
should be avoided especially in the presence of space-occupying
intracranial lesions or processes (cerebral edema, intracerebral hem-
orrhage, subdural hematoma, tumor, etc). Isotonic solutions are
preferable at all events.
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Figure 6: ICP increase in response to a change in plasma osmolality
increase in intracranial pressure (ICP, mmHg) measured in
laboratory animals in response to reduction of plasma osmola-
lity (mosmol/kg H2O) induced by infusion of Ringer’s lactate, as
reported by various authors [165, 177*, 342, 392, 420, 421].
* This author most likely meant osmolarity rather than osmola-
lity (�).
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5.5. The Pathophysiology of Hyperosmolality

A number of classical clinical pictures are known to produce an occa-
sionally dramatic increase in plasma osmolality with very high mortali-
ty.

Hyperosmolar hyperglycemic nonketotic syndrome (HHNS) in diabetics, which
used to carry a mortality rate of almost 50% [12, 18], is thought to be due to
excessive hyperglycemia, which produces a corresponding level of hyperosmo-
lality. Clouding of consciousness begins at a glucose concentration of about 
35–45 mmol/L, or a plasma osmolality of 325–335 mosmol/kg H2O, and is due to
hyperosmolality rather than to hyperglycemia [12, 350]. Substantial hyperosmo-
lality is also observed in diabetic keto-acidosis (DKA), and loss of consciousness
again is clearly correlated with plasma osmolality. In this condition, however, the
hyperosmolality is rather due to an increase in lactate and ß-hydroxybutyrate
than by an increase in glucose [102]. In both HHNS and DKA, mortality is clearly
correlated with plasma osmolality – in children with the greatest predictive value
[172].

Hypovolemic shock (acute hemorrhage with hypotension) also triggers
hyperglycemia with hyperosmolality [37].

In an animal model, this has been found to be due to the release of epinephrine
followed by hepatic glucose release [171]. Another hypothesis postulates that the
increase in lactate leads to hyperglycemia via hepatic gluconeogenesis [183]. (In
animal models) the hormone-induced increase in extracellular osmolality is pro-
portional to blood loss [119], and detectable the sooner the greater the blood loss
[45]. What remains a matter of debate, though, is whether hyperglycemia is
responsible for hyperosmolality to a large [152] or rather small extent [183]. In
patients with (multiple) injuries, mortality is clearly associated with hyperosmo-
lality [180, 183]. In fact, survivors and nonsurvivors can be differentiated by their
level of hyperosmolality: The difference between survivors and nonsurvivors is as
little as 5 mosmol/kg H2O in acute stroke patients [34], 15 mosmol/kg H2O in
multiple trauma patients [1], and as much as 25 mosmol/kg H2O in ICU patients
[160].
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The repeatedly corroborated fact that hyperosmolality in shock patients
has a not-insignificant role in restitution of the extracellular volume as
well as plasma volume [37, 119, 171] will be revisited elsewhere in this
Booklet.

Conclusion: Isotonic infusion fluids should be used as a matter of
principle, especially in pre-existing hyperosmolality in shock
patients. Hypotonic IV fluids should not be used because of the risk
of cerebral edema. Hypertonic solutions should only be used – e.g.,
in an effort to reduce ICP – as long as plasma osmolality is less than
320 mosmol/kg H2O [161].
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6. Effects of Infusion Fluids on a Patient’s Acid-Base Balance

6.1. Labeling

The product label (composition) must alert the treating physician to
potential effects of an infusion fluid on a patient’s acid-base balance.
The following parameters are available:

While mandatory for inclusion in the product label, titration acidity (TA,
mmol/L) is practically useless in this regard. It can be determined by
titration in the laboratory or calculated from the composition.

The base excess (BE, mmol/L) of an infusion fluid, defined in analogy to
blood [419], indicates the amount of HCO3

– (mmol/L) needed to bring
the pH of the solution to the patient’s pH (7.40) under laboratory con-
ditions (pCO2 = 40 mmHg).

This means that any IV fluid without HCO3
– automatically has a BE of

–24 mmol/L or greater, depending on its titration acidity.

The potential base excess (BEpot, mmol/L) of an IV fluid indicates the
amount of HCO3

– that can potentially be consumed or released in the
patient’s body after infusion and metabolism of metabolizable anions
(pCO2 = 40 mmHg). This value is obtained by adding BE (with a minus
sign) in mmol/L to the sum of metabolizable anions, taking account of
their valence.

Described as “infusion of actual or potential hydrogen ions” back in
1972 on the example of acid and alkaline amino acid infusions [146],
BEpot was defined in 1993 [419] and, in 2002, applied to a large num-
ber of infusion fluids [418].
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Conclusion: As with the calculated in vivo osmolality of 290 ±
10 mosmol/kg H2O, basically the same demand is made here: Physi-
cians are only fully informed about an infusion fluid if they are pro-
vided with the information they need to assess the impact of the IV
fluid on their patient’s acid-base status. In fact, doctors are rarely
interested in bottle contents (pharmacy), and never in the amounts
of ingredients that went into the solution (manufacture). The solu-
tion is ideal for them and their patients if BEpot is 0 ± 10 mmol/L.

6.2. What Does a BEpot of 0 mmol/L Mean for the Patient?

Any infusion fluid that does not contain the physiological buffer base
HCO3

– (BE –24 mmol/L) will invariably produce dilutional acidosis when
administered to a patient; the extent of dilutional acidosis obviously
depends on the volume administered and the infusion rate.

Example: A solution with a TA of 10 mmol/l contains 24 mmol/L of
acetate (monovalent anion) and 5 mmol/L of malate (bivalent anion),
which between them release 34 mmol/L of bicarbonate. The BE of this
solution is thus 34 mmol/L (TA + missing HCO3

–), but this value reflects
only the effect of the solution per se, in the absence of anion meta-
bolism. However, as both acetate and malate are rapidly metabolized 
in the liver and muscle, the potential base excess of the solution is 
0 mmol/L. This means that, after infusion and metabolism of acetate
and malate, this solution can have no effect on the patient’s acid-base
balance and, therefore, will cause neither acidosis nor alkalosis. The
requirement of a BEpot of 0 with a variation of ± 10 mmol/L is deduced
from the fact that the solution will be diluted with 15 L of ECFV in the
patient (75-kg individual) where it should produce a BE change of less
than 1 mmol/L.
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6.3. Base Excess and Mortality in Multiple Trauma Patients

The base deficit (BD, negative base excess) of arterial blood has been
shown to be the best quantitative indicator of acute blood loss in ani-
mal models, outperforming 27 other hemodynamic parameters and lab-
oratory chemistries [389].

Early observations from 1979 in 50 patients had suggested that BE
might also be a good prognostic indicator for multiple trauma patients
[288]. Since 1990, four clinical trials [80, 321, 326, 347] enrolling about
8,000 patients with multiple injuries have demonstrated that base
excess on admission, compared with a large number of other parame-
ters, is indeed the best prognostic indicator for mortality, complication
rate, transfusions needs, etc. It has also been shown that a potential
increase in base deficit (negative BE) – referred to as BE clearance (see
below) – from hospital to ICU admission is a valid estimate of subse-
quent risk [322, 356]. These results are summarized in Figure 7.

Of course, these data cannot establish that base excess is indeed the
cause of the observed mortality. One might come away with this idea
when one considers the magnitude of the replacement fluid volume
administered during this time:

The same studies found that a combined volume of 5 to 14 L of crystal-
loids and colloids was administered in the first 24 hours or until ICU
admission. This suggests the following conclusion:

“Commen sense suggests that in critically traumatized patients with
multiple organic causes of acidosis any iatrogenic acidosis should best
be avoided, especially when the advantages of using normal saline in
most cases are not compelling” [151].



It will be demonstrated under BE and Clotting below that there is
indeed a causal relationship between BE and mortality.

In trauma patients, the baseline base deficit is a predictor of subse-
quent mortality as well as a strong indicator of later morbidity: A value
greater than 6 mmol/L (BE < –6 mmol/L) suggests intraabdominal injury
following blunt trauma [79], the development of acute pulmonary fail-
ure [94], or posttraumatic shock in pediatric patients [309].
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Figure 7: Mortality vs. base excess (BE) in multiple trauma patients:
Correlation between mortality (%) and base excess (mmol/L)
on hospital admission and 24 hours thereafter in a population
of approximately 8,200 patients statistically selected from
about 15,300 patients [80, 321, 326, 347].
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6.4. BE Clearance and Mortality in Trauma Patients

Like lactate clearance, normalization of the base deficit can be used as
an indicator of the clinical course in trauma patients:
Survivors normalized their BD from 7 or 15 to approximately 0 mmol/L
within 24 hours, while nonsurvivors only showed a decrease in BD to 
2–4 mmol/L [77]. Persistent BD above or below 4 mmol/L differentiates
highly different mortality rates of 9% and 50%, respectively [185]. All
surviving pediatric patients normalized their BD within two days [309].
The sole indicator of an unchanged or worsening prognosis in multiple
trauma patients is whether their BD remains unchanged or increases in
the interval between hospital admission and ICU admission [322].

6.5. Does Alcohol Interfere with BE Measurements?

There has been concern that the plasma lactate concentration might, as
a result of oxidation of ethanol, cause BD to be misinterpreted in alco-
hol-intoxicated patients.
This suspected interference has not been confirmed in a very large
number of trauma patients: The largest BE difference between individ-
uals with 0 and over 2‰ blood alcohol concentration was as small as
1.3 mmol/L [78] or not greater than 2.8 mmol/L [91], depending on the
patient population studied.

6.6. Why Is Metabolic Acidosis a Problem?

Metabolic (lactic) acidosis interferes substantially with blood clotting
(see below) and intrahepatic gluconeogenesis (see above), which
decreases significantly from a pH less than 7.1 (equivalent to a base
deficit of 17.5 mmol/L) [31, 147]. In addition, metabolic (lactic) acidosis
interferes with the cardiocirculatory system.



47

The concentrations of catecholamines epinephrine and norepinephrine increase
substantially in the presence of lactic acidosis from a pH of 7.15, and the effect
of exogenously administered norepinephrine is reduced [110]; the ventricular fib-
rillation threshold is significantly lowered, resulting in a correspondingly
increased risk of arrhythmia, which, however, is never the case with respiratory
acidosis and alkalosis (pH 7.0 to 7.7) [125]; acidosis has a direct negative
inotropic effect on the myocardium, along with an indirect effect in that the
myocardial response to circulating catecholamines is reduced [238].

The high mortality associated with lactic acidosis should be reiterated:
In a large retrospectively analyzed population of 851 patients (from a
total population of 9,800 ICU patients with a mortality rate of 26%), it
was shown that mortality associated with lactic acidosis (56%) was
substantially greater than mortality associated with acidosis with
undetermined anion gap (39%) or hyperchloremic acidosis (29%) [132]. 

6.7. Base Excess and Clotting

There is a causal relationship between mortality and base excess in
trauma patients, resulting in hemorrhagic shock with death from blood
loss accounting for over 50% of clinical causes of death [331], being
responsible for more than 80% of deaths in the OR [69, 136], and rep-
resenting the most frequent cause of hemorrhage-related death with
coagulopathy, acidosis, and hypothermia in the early postoperative
period [226]. Aggressive management of the “lethal triad” – coagulopa-
thy plus metabolic acidosis plus hypothermia – therefore appears to
have the greatest potential of reducing mortality in severely injured
patients [181].

This causal relationship is based on the fact that clotting activity is
affected not only by temperature [175] but to a very large extent also
by pH or BE, as is clearly demonstrated by numerous in vitro and in vivo
studies:
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Using three selected coagulation factors, experimental studies have
shown that in vitro clotting factor activity is to a large extent deter-
mined by pH: Clotting (factor) activity was found to be halved at pH
7.20 (base deficit, 12.5 mmol/L) and doubled at pH 7.60 (base excess,
16.5 mmol/L) [248]. 

This observation has been corroborated in patients, as shown in Figure
8: a highly significant (p<0.001) correlation between prothrombin time
(PT, Quick, %) and negative base excess was found in 4,066 out of a
total of 20,815 severely injured (ISS �16) multiple trauma patients of
the Trauma Registry of the German Society of Trauma Surgery
(Deutsche Gesellschaft für Unfallchirurgie) receiving primary care [210].
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Figure 8: Clotting activity (prothrombin time, Quick, %) as a function of
BE (mmol/L) in about 4,000 multiple trauma patients.
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Apart from prothrombin time (PT), partial thromboplastin time (PTT) can also be
matched with the base deficit of trauma patients on hospital admission: a larger
BD will substantially increase both times [40], affecting as many as 25% of all
trauma patients on admission [39]. In has been shown in large patient popula-
tions (7,683 out of 20,103) that PT and PTT are independent predictors of mortal-
ity in trauma patients [229], with PTT being even more predictive than BE [228].

These bench and bedside findings therefore suggest that a base deficit
of approximately 15 mmol/L primarily reduces clotting activity to
approximately 50%, which secondarily explains the reported mortality
rate of approximately 50% in multiple trauma patients.

Numerous studies have looked at whether or not infusion fluids have an
impact on coagulation in vitro or in vivo; the in vitro methods used in
those studies will be commented on in another section below.

In vitro hemodilution with 0.9% NaCl, Ringer’s lactate or electrolyte solution
results in increased coagulation, or hypercoagulopathy [96, 167, 329, 331], as
does in vivo hemodilution [239, 277, 278, 330]. Exactly why hemodilution should
result in activation of the clotting system remains unclear [114], and the
observed effects are presumably due to methodological problems [198]. Much
more likely would be the observation of reduced clotting, or dilutional hypoco-
agulopathy, as described for HES, albumin or 0.9% NaCl solution following in
vitro dilution [24, 371].

Hemodilution thus has general repercussions: Dilution means dilutional
coagulopathy because the concentrations of coagulation factors are
reduced. However, dilution also produces dilutional acidosis, which in
turn may produce hypocoagulopathy. The latter should therefore
always be avoided through the use of balanced solutions, while the use
of conventional crystalloids, such as 0.9% NaCl, should be minimized
[69].

In an animal model – uncontrolled bleeding from a liver incision – the use of
0.9% NaCl for volume replacement was observed to produce significant acidosis
with hypocoagulopathy, resulting in major blood loss and hence the need for
large volumes for blood pressure stabilization, while this effect was not observed
with Ringer’s lactate, known to produce (see below) hypercoagulopathy (TEG,
PTT) without concomitant acidosis [186].
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Experimentally induced acidosis (addition of HCl or lactic acid) pro-
duces hypocoagulopathy in vitro [10, 101]. This observation has been
contested by other authors in that this effect was observed only in con-
junction with hypothermia [84]. This effect of acidosis is reversible
[100, 101].
It was not reversible, however, in vivo in 4 animal studies where coagu-
lopathy persisted for another 12 to 18 hours despite treatment of aci-
dosis: Both metabolic acidosis from hemorrhagic shock [327] and HCl
infusion-induced acidosis [92, 241, 242] produced coagulopathy with
decreases in platelet counts and in fibrinogen concentration to approx-
imately 50–60% of normal, not reversible by treatment with HCO3 or
THAM (TRIS). Buffer therapy can only lessen the clotting disorder.

Conclusion: Because acidosis therapy is only effective if started
during shock [327], and correction of acidosis takes several hours to
exert a corrective action on a clotting disorder [241, 242], the fol-
lowing tenet applies: “Acidosis should be excluded” [92]. Or even
more to the point: During the management of hemorrhage, any aci-
dosis must be prevented through the use of a balanced solution, and
exacerbation of acidosis, in the form of dilutional coagulopathy or
dilutional acidosis, must be avoided.

6.7.1. BE and Measurement of Coagulation Status

The correlations established between acid-base status and coagulation
and/or fibrinolysis should be extended to include diagnostics, most
readily described on the example of thrombelastography (TEG).
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The problems involved on the example of hypothermia are demonstrat-
ed first: The clotting activity of a patient with a body temperature of
32°C rather than 37°C is reduced by about 50% as a result of hypother-
mia alone [175]. If the patient’s clotting status were determined, say, by
TEG at 37°C, this would produce a misdiagnosis because the hypother-
mic patient’s blood sample, brought to normal temperature in the
thrombelastograph, would erroneously suggest a normal clotting sta-
tus. This is why patient temperature can nowadays be set on point-of-
care (POC) TEG instruments [193]. Given the significant temperature
dependence, this had also been demanded for PT and PTT very early on
[325]. 

The same applies to the patient’s acid-base status, defined by the pH in
conjunction with BE (mmol/L) and the pCO2 (mmHg) of the blood. If
clotting status is determined in such a way that changes in pH or BE
are reversed by the diagnostic methods used – e.g., by the use of
buffered reagents – or that changes in pH are allowed – e.g., the pH of
a sample increases as a result of loss of CO2 – leading to alkalosis – it is
no longer possible to detect acidosis-related clotting disorders. All
potential changes in pH, BE, and pCO2 must be prevented to ensure the
patient’s momentary clotting status is captured correctly. This is not
feasible as yet. For example, if samples are mixed with HCO3

–-free solu-
tions, such as 0.9% NaCl in a ratio of 1 + 1, this will lead to dilutional
acidosis, with pH decreasing from 7.40 to 7.10, erroneously suggesting
a clotting disorder in vitro.

If it is currently claimed for TEG (see above) that in vitro–generated acidosis
alone has no effect on clotting, but only synergistically in combination with
hypothermia [84], then this test should be repeated with an optimized TEG
method under reproducible conditions of the acid-base status of the samples. 
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6.7.2. Alleged Effects of Colloids on Coagulation

Given the methodological considerations discussed above (TEG), the
following findings are included here only with reservations: Primary
hemostasis in vivo has been claimed to be inhibited by gelatin [81] and
to lead to dilutional coagulopathy in an animal model [113]; HES, gela-
tin, and albumin have been claimed to interfere with coagulation in
vitro [96], and HES, depending on the author, has been claimed to cause
hypercoagulopathy [328] or hypocoagulopathy in vivo [239].

6.7.3. Coagulation and Ionized Calcium

The normal plasma calcium concentration is approximately 2.5 mmol/L,
and about half of plasma calcium is bound to proteins, mainly albumin.
The calcium concentration that has an important role in clotting is the
concentration of ionized (free) Ca2+ (1.25 mmol/L).

As protein binding depends greatly on pH – the Ca2+ concentration
increases in acidosis – the concentration increases from 1.25 to 1.34
mmol/L at a BE of –15 mmol/L (pH 7.15). In other words, clotting activ-
ity is increased. In major blood loss, both albumin-bound Ca2+ and ion-
ized Ca2+ are expected to decrease.

Severe hypocalcemia – seen in 10% of trauma patients – is defined as a
Ca2+ concentration <0.9 mmol/L [388] which should be treated with
calcium supplementation [337]. Ca2+ binding, or reduction in free calci-
um, has been described for lactate (chelation) and colloids. Lactate can
be assumed to produce a linear decrease in Ca2+ concentrations by 
0.05 mmol/L per 1 mmol/L of lactate [388, 415]. At a lactate concen-
tration of 10 mmol/L, this means a reduction in ionized calcium from a
normal concentration of 1.25 to 0.75 mmol/L, or hypocalcemia requir-
ing therapy. Patients with lactic acidosis have been described to have
substantially more pronounced hypocalcemia [65]. Among the colloids,
only (negatively charged) gelatin has been reported to bind calcium.
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The resultant decrease in Ca2+ concentration by 0.043 mmol/L at a gel-
atin concentration of 10% is, however, not clinically [388] significant,
since gelatin solutions contain only 3–4% gelatin.

Conclusion: The use of lactate-containing infusion fluids (Ringer’s
lactate) and older packed red cell products should be avoided in
acute hemorrhage because these are liable to produce or worsen
hypocalcemia. Infusion fluids should contain at least the physiolog-
ical Ca2+ concentration of 1.25 mmol/L; higher concentrations up to
2.5 mmol/L maintain the physiological pool of albumin-bound cal-
cium.
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7. Differentiation Between Colloid Volume Replacement and
Crystalloid Fluid Replacement

Successful differential intravenous fluid management crucially depends
on clinicians to make a clear distinction between these two disparate
therapeutic goals / indications (see above)

� intravascular volume replacement with colloidal/isotonic/isooncotic
solutions VERSUS

� extracellular fluid replacement with crystalloid/isotonic solutions.

As either indication involves treatment of the extracellular fluid volume
– either all (fluid replacement) or part of it (volume replacement) –
there is a clear need for physiological, i.e., balanced, infusion fluids.

If, for the time being, there is no evidence from randomized controlled
trials (RCTs) to establish that “fluid replacement” with colloid solutions
is superior to fluid replacement with crystalloid solutions [323], the
natural conclusion would and should be to initiate studies that differ-
entiate strictly between crystalloid fluid replacement and colloid vol-
ume replacement with the exclusive use of balanced solutions.

7.1 The Clinical Physiology of Major Fluid Compartments

Typical volumes of the major fluid compartments in a 75-kg individual
are as follows: intracellular fluid volume (ICFV), 30 L (40% of body
weight); extracellular fluid volume (ECFV), 15 L (20% of body weight);
intravascular blood (fluid) volume (IVFV), 5 L (plasma volume, 3 L); the
plasma volume is part of the ECFV. The ratio of plasma (3 L) to ECFV 
(15 L) is thus 1:5, and the ratio of plasma volume (PV) to the extravas-
cular fluid volume (EVFV, interstitial volume, 12 L) is 1:4. These ratios
are essential to the infusion of an isotonic electrolyte solution, which
distributes throughout the ECFV: Given a PV/EVFV (12 L) ratio of 1:4,
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infusion of 5 L of such a solution produces a blood volume increase by
only 1 L (20%), while the EVFV increases by as much as 4 L (80%).

These figures for the distribution of crystalloid fluids have been con-
firmed many times over by measurements performed in healthy volun-
teers or patients following the infusion of 0.9% NaCl or Ringer’s lactate
or Ringer’s acetate.

Examples for 0.9% NaCl: 180 mL remained within the intravascular compartment
(BV) after an infused volume of 1 L [205], 375 mL after 2 L [218], 483 mL after 
2 L [315], 768 mL after 3.2 L [127], and 1,085 mL after 3.5 L [128]. All of these BV
increases are equivalent to 18% to 31% of the infused volume. Examples for RL:
194 mL after 1 L [144] and 369 mL after 2 L [315]; example for RA: approximate-
ly 225 mL after 1.5 L [135]. These values are all in the same range as the 0.9%
NaCl values. Similarly, the 4 intraoperative examples in Figure 1 [41, 367, 395,
406] clearly show for the distribution of chloride that crystalloid fluids distribute
throughout the ECFV.

Only 20% of the infused volume of crystalloids used for intravascular
volume replacement therapy will actually reach its target compart-
ment.

Conversely, if the objective is to increase the blood volume by increas-
ing the plasma volume with a colloid (i.e., isooncotic) solution, a blood
loss/volume replacement ratio of 1:1 can be safely assumed [411].

Figure 9 illustrates available options for increasing the blood volume
(BV, IVFV) by a total of 1 L with different IV fluids. This can be achieved
by infusing the patient with either 9.4 L of D5W (i.e., 5% dextrose solu-
tion in water, which behaves like pure water) or 5 L of 0.9% NaCl solu-
tion (isotonic crystalloid) or as little as 1 L of 6% HES solution (isoon-
cotic colloid).
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Hyperoncotic 10% HES solution is a unique fluid: 0.6 L of it has the same
volume effect as 1 L of 6% HES because 0.4 L is shifted from the ECFV
into the IVFV following the oncotic pressure gradient: Hyperoncotic 10%
HES is ideal for one-off (!), rapid volume replacement therapy.

7.2. Would-Be Volume Replacement with Crystalloids

Over the past few decades, clinicians have almost routinely – though
with little success – been trying to achieve intravascular volume
replacement through extracellular fluid replacement: “The most obvi-
ous clinical problems of inappropriate fluid resuscitation are shock
from insufficient volume replacement and overhydration with subse-
quent pulmonary edema.” [312].
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20 % 40 %

75 kg 
(body weight)
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Figure 9: Options for increasing blood volume (IVFV) by1 L.
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Numerous animal studies of isovolemic hemodilution have demonstrat-
ed that animals do survive substantial blood volume loss when infused
with crystalloids (typically RL) alone.

Following the removal of massive blood volumes and replacement of the removed
blood with a crystalloid solution, 20% to 100% of animals survived down to a
hematocrit of 20% to 25% when the blood volume loss was replaced with 2.5 to
3 times the removed blood volume [26, 366]. At a hematocrit of 10% (two-thirds
of blood volume removed), 50% of the animals survived when three times the
removed volume was replaced [373, 374]. Animals even survived a hematocrit of
5.8% in one study replacing three times the removed blood volume [249].

However, it is inappropriate to consider these findings as evidence in
support of a rational approach to hypovolemia because too many argu-
ments suggest otherwise:

� Any crystalloid volume replacement therapy increases the EVFV,
causing an increase in body weight which may be more or less substan-
tial. Overhydration (hyperhydration, intravenous fluid overload) has
been defined as >10% weight gain [220] after a prospective study in 
48 ICU patients had shown that mortality was 10% in those with 5%
weight gain, 20% in patients gaining 15%, and 100% in those with
32% weight gain. A >10% increase in body weight means that a 75-kg
patient gains 7.5 kg (liters), which entails a 30% increase in blood vol-
ume (from 5 to 6.5 L) and a 50% increase in ECFV (from 15 to 22.5 L).
As the compliance of the EVFV increases further above the 5 L/mmHg
baseline value (in a 75-kg individual) with increasing expansion [134],
weight gain is not limited by a pressure increase in the EVFV until
extreme levels are reached.
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� Volume replacement therapy with crystalloids requires about 5-fold
greater volumes. The risk of dilutional acidosis from excessive fluid
therapy with overhydration is therefore particularly great with crys-
talloids. Quantitative evidence in support of this is presented using 
3 examples (Figure 10) showing intraoperative dilutional acidosis
produced by infusion fluids with or without metabolizable anions
(Ringer’s lactate with 27 mmol/L of lactate or 0.9% NaCl solution).

The first three cases [41, 367, 406] have already been commented on in Fig-
ure 1; in one case [367] only the bicarbonate changes rather than absolute
values could be used; the fourth case mentioned in Figure 1 [395] could not
be included because the lactate concentration had increased substantially as
evidence of impaired metabolism. 

The simple balance of the bicarbonate concentration of the ECFV (20%
of body weight), starting with a normal value of 24 mmol/L, shows
good agreement between the calculated concentration and the con-
centration measured by the authors. 

Again, the following model calculation (mmol/L) is given as an exam-
ple: 15 L of ECFV with 24 + 5 L with 0 (0.9% NaCl) gives 20 L with 18.0.
This overhydration now produces dilutional acidosis which, however,
shows lower mortality than lactic acidosis [38, 132].

After the chloride balance, now also the HCO3
– balance adds to the

clinical evidence in support of the distribution of crystalloid fluids
throughout the entire ECFV.
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� Volume replacement therapy without the use of colloids reduces the
albumin concentration and hence colloid osmotic pressure (COP,
mmHg), invariably causing more water to move from the intravascu-
lar to the extravascular compartment. Unlike fluid accumulating in
skin and muscle, pulmonary edema may lead to very serious prob-
lems. The correlation between mortality and colloid osmotic pressure
in 99 ICU patients with cardiopulmonary diseases [266] and 128
critically ill patients [305] is shown in Figure 11: A reduction of COP
to approximately 14-17 mmHg already results in a mortality rate of
approximately 50%.

Figure 10: Dilutional acidosis as a result of overhydration intraopera-
tively produced by excessive fluid therapy [41, 367, 406] .
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� Infused crystalloid volumes must be increased substantially to
replace increasing blood losses: An estimate shows that 6 L of crys-
talloid must be infused to replace the first liter of blood lost, while as
much as 7.3 L is needed to replace the second liter.

The first liter of blood lost increases the PV/ECFV ratio from 1: 5 to 1: 6
because the blood loss entails greater plasma loss than RBC loss (2.4 L of PV :
14.4 L of ECFV). This ratio increases to 1: 7.3 for the second liter of blood lost
as a result of the preceding hemodilution. This phenomenon has been demon-
strated in animal studies where the ratio of increasing blood loss to crystal-
loid replacement volume increases from 1: 3 to as much as 1: 12 [51, 52, 53].

Approximately the same ratios apply to humans: When using crystal-
loids, minor blood loss should be replaced in a ratio of 1: 3, moderate
blood loss in a ratio of 1:5, and major blood loss (>1.5 L) in a ratio of
1:10 [269].

60

Figure 11: Mortality of ICU patients at reduced COP.
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� Crystalloid volume replacement therapy requires the use of increas-
ing volumes that are the larger, the slower the infusion rate: To
increase the PV in healthy volunteers by 250 mL, 750 mL of crystal-
loid must be infused over 15 minutes (the ratio is 1:3), but 1,125 mL
is needed if this volume is administered over 45 minutes (the ratio is
now 1:4.5) [137]. The most likely explanation for this observation is
that the increasing expansion of the EVFV expands the distribution
space for albumin (this phenomenon has been referred to as “albu-
min hemodilution”) [351], leading to extravasation of albumin [51,
269].

� The plasma albumin concentration is the major determinant of crys-
talloid volume replacement: The lower the albumin concentration,
the greater the fluid shift from the intravascular to the extravascular
space, i.e., there is an increase in EVFV [351]. The following observa-
tion appears to be essential: Intravascular hypervolemia resulting
from excessive infusion of crystalloids causes a shift of protein-con-
taining fluid into the interstitial space [169].

� How best to monitor and control crystalloid-based volume replace-
ment therapy is apparently still a matter of much debate all over the
world: “It dose not make sense to titrate a fluid, most of which
enters the interstitial space, against measurements taken of the
intravascular space.” [377]. This argument will be taken up again
below in the “CVP Titration” section.

Three of the seven arguments mentioned will be discussed and assessed
in more detail below.
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7.3. Fluid Overload – Pulmonary Edema

As early as 1973 [33], investigators urgently warned clinicians against
overhydrating their patients: “currently overhydration is a far more fre-
quent and serious problem in surgical patients than is dehydration.”

The development of pulmonary edema was elucidated by Guyton’s classical ani-
mal experiments in 1959 [133]: Once the artificially altered pulmonary capillary
pressure (PCP) even minimally exceeded 25 mmHg, a laboratory animal would
develop pulmonary edema within 30 to 180 minutes. When the plasma protein
concentration was halved, pulmonary edema developed promptly after PCP even
minimally exceeded 12 mmHg. Clinicians should therefore always maintain a
clearly positive COP–PC(W)P difference to prevent any fluid shift to the extravas-
cular space [306, 386].

The need for this precaution is particularly evident in patients with sep-
tic or hypovolemic shock [306]: After infusion of a mean volume of 8.6 L
of 0.9% NaCl solution, 88% of those patients developed pulmonary
edema once the COP–PCWP difference had decreased to 2 mmHg
(mean COP, 14.7 mmHg; mean PCWP, 12.7 mmHg). Following infusion
of 5.2 L of a 6% HES solution, as few as 22% of the patients developed
pulmonary edema (COP 23.5 mmHg minus PCWP 16.8 mmHg = 
6.7 mmHg). Patients undergoing aortic surgery who were intraopera-
tively infused with 8.4 L of RL did not develop pulmonary edema despite
a COP drop to 12 mmHg if PCWP was maintained at 6 mmHg [345]. The
teaching points of these studies are clear enough: Avoid a significant
drop in COP, and avoid overhydrating your patients.

7.4. Fluid Overload – Increase in Body Weight

Weight gain from overhydration should not be taken lightly: “Weight
gain and systemic edema are not benign problems” [312].

Here are a few extreme values to illustrate the issue: A patient with myocardial
infarction of the right side of the heart within 24 hours received 14 L of normal
saline and D5W, had a urinary output of 2.7 L and 17% weight gain [168]. An
animal model simulating septic shock involved the infusion of 8.3 L of Ringer’s
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solution within 6 hours, resulting in a measured 37% weight gain [244]. Burn
patients with a mean burned body surface area of 46% received up to 50 L of RL
within 24 hours [157]; their estimated weight gain was 40 kg, or 60% of their
baseline body weight.

A closer look at the elimination kinetics of crystalloid fluids helps
explain this phenomenon.

Normovolemic subjects intravenously infused with 1 to 3 L of normal saline,
Ringer’s lactate/Ringer’s acetate, or D5W within approximately 1 hour, excreted
only 25% to 40% of NS within 4 to 6 hours, 45% to 60% of RL/RA within 2 to 24
hours, or 100% of D5W within as little as 2 hours [86, 87, 159, 218, 315, 352]. If
hypovolemia or hypervolemia was induced (by removal of up to 900 mL of blood
or overinfusion, respectively), the elimination kinetics of the infused 2 L of RA
were essentially unchanged [87]. The elimination kinetics are thus determined by
the sodium/chloride content: Of 1 L of D5W with or without 70 mmol/L of sodi-
um, as much as 85% to 100% was excreted within 2 hours, while only 50% was
eliminated of the same volume of Ringer’s acetate with 130 mmol/L of sodium
(chloride) [352]. After 24 hours, as little as 17% of the infused 8.6 L of 0.9% NaCl
solution was excreted [306].

Rapid osmoregulation – the elimination of free water (D5W) – apparent-
ly takes precedence over slow volume regulation – via essentially isoton-
ic solutions (NS, RL/RA), distributed throughout the ECFV. In other
words, free water is excreted rapidly, while sodium and chloride are
eliminated significantly more slowly [136]. This effect is no doubt driven
by hyperchloremia (see above) limiting fluid elimination as a result of
renin-aldosterone system suppression [89].

Moreover, the maximum daily urinary output appears to be limited to
approximately 3 L (mean across 9 series, 3.1 ± 0.7 L/day) during exces-
sive fluid therapy – i.e., a fluid intake of 5–50 L/day – with isotonic or
hypotonic hyperchloremic solutions (0.9% NaCl, RL) [15, 89, 158, 168,
201, 341, 386]. This is demonstrated particularly impressively on the fol-
lowing example [341]: Following intraoperative administration of a total
volume of 12.5 L with 9.5 L of RL, urinary output is as low as 2.7 L on the
day of surgery and 2.9 L on postoperative days 1 and 2.
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Body weight gain from hyperhydration is thus inevitable.

Applied to patients in the intra and postoperative setting, these findings
have the following consequences [15, 340, 341]: Intraoperative infusion
of 9.5 L of RL (130 mmol/L of sodium) produces an 11% to 14% postop-
erative weight gain until the intraoperative sodium load of 1,235 mmol
has been excreted in a maximum daily urine output of approximately 
3.0 L. The increase in body weight, or ECFV overhydration, is still 8% on
postoperative day 3 and 5% on postoperative day 4.

7.5. Fluid Overload – Compartment Syndrome

Overhydration (fluid overload) may lead to an abnormal increase in
intraabdominal pressure with significant disruption of organ functions.

An international conference on critically ill adult patients has devel-
oped the following definitions of intraabdominal pressure (IAP) [230]:
The normal IAP is 5–7 mmHg; intraabdominal hypertension (IAH) is
defined as an IAP �12 mmHg; and an abdominal compartment syn-
drome (ACS) starts at an IAP >20 mmHg.

A review identified the “excessive use of crystalloids” as the primary
determinant of the development of ACS, and deplores that “consensus
regarding the optimal composition and volume of fluid required is lack-
ing” [70].

Three typical patient populations are described in support of this:

A study in trauma patients compared normal (7 L/24 hrs) with supranormal 
(13 L/24 hrs) volume replacement therapy using Ringer’s lactate. The percentage
of IAH, ACS, and multiple organ failure doubled to 42%, 16%, and 22%, respec-
tively, and mortality increased from 11% to 27% in those receiving supranormal
volume replacement therapy [23]. In a study in medical patients with a mean
positive fluid balance of 6.9 L, 85% had IAH and 25% ACS with organ dysfunction;
the authors recommend IAP measurements in patients with a positive net fluid
balance of >5 L in 24 hrs [57]. A study in burn patients with approximately 30%
burned body surface area (BBSA) compared crystalloid with plasma therapy, and
found that survivors (urine output as low as 1.4 L/day) had received 45 L and non-
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survivors 61 L of crystalloid during treatment; the IAP increase among survivors
was 24 mmHg versus 34 mmHg among nonsurvivors [284]; to ensure a urinary
output of 1.8 L/day, burn patients must be infused with 15.6 L of Ringer’s lactate;
this produces an ACS (IAP >22 mmHg) within 24 hrs in 50% of patients [287].

7.6. Parameters Used for Control of Volume Replacement 
Therapy

Eighty five percent of the human blood volume (BV, IVFV) is in the low
pressure system characterized by very great compliance (�V/�P)
upstream of the right and left sides of the heart, and 15% is in the high
pressure system characterized by low compliance downstream of the
left side of the heart.

A basic distinction must be made between static and dynamic parame-
ters:

1. Static parameters such as central venous pressure (CVP), systolic
blood pressure (SBP), diastolic blood pressure (DBP) or mean arterial
blood pressure (MAP) can be used to describe the volume status in
the low pressure system upstream of the right side of the heart (CVP)
or in the high pressure system (MAP) downstream of the left side of
the heart. Hypovolemia causes low pressures on both sides (CVP,
MAP).

2. Information about fluid responsiveness can be obtained from the
dynamic response to a colloid volume bolus into the low pressure
system upstream of the right side of the heart. The response can be
diagnosed in the low or high pressure system. Hypovolemia exists if
the response (�P) upstream of the right side of the heart is negative
or the response downstream of the left side of the heart is positive.
Given the differences in compliance, the dynamic response to a vol-
ume bolus upstream of the heart (low pressure system) tends to be
small and that downstream of the heart (high-pressure system) tends
to be large.
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7.6.1. Central Venous Pressure (CVP)

Central venous pressure (CVP, mmHg), a classical static parameter for
evaluating a patient’s volume status, can be used to demonstrate how
differently this parameter may be used in clinical practice. It is assumed
that appropriate CVP measuring technique is used, including correct
catheter placement, zero calibration, and elimination of intrathoracic
(ventilation, PEEP) or intraabdominal pressure increases.

Arbitrarily selected examples are provided in Table 5.

Compared to the very low normal CVP reading of 4 to 6 mmHg, which
remains essentially unchanged even during acute hypovolemia or isov-
olemic hemodilution, the target values are obviously subject to exceed-
ingly great variability, and this would appear to carry a high risk of fail-
ure to control much-dreaded hypovolemia.

If all groups of patients had a CVP of 12 mmHg recorded even before
the planned volume replacement therapy for septic shock [42], the
question arises what target CVP was used.
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Table 5:

Arbitrary selection of typical CVP targets for various indications

Ref. Indication CVP target (mmHg)

Mittelstaedt et al. (2004) Intraop. liver resection 0–3.7

Modig (1986) Traumatic shock > 4.4 

Lowery et al. (1971) Hemorrhagic shock 2–7

Sander et al. (2003) Intraop. Gyn. surgery > 4.4

Mythen et al. (1995) Intraop. cardiac surgery1 5.5

Lucas et al. (1978) Intraop. losses2 6.2 /11.3

Kumle et al. (1999) Intraop. abdominal surgery 10–14

Boldt et al. (2000) Intraop. abdominal surgery 10–14

Wakeling et al. (2005) Intraop. gut surgery 12–15

Gan et al. (1999) Intraop. blood loss > 0.5 L � 15

Riddez et al. (1997) Acute hypovolemia3 5.7 � 3.2

Weiskopf et al. (1998) Acute isovolemic anemia4 5.5 � 4.5

1 200-mL boluses of 6% HES were infused until CVP responded with a >3 mmHg
increase.

2 A CVP of 11.3 mmHg was considered an “adverse effect” of albumin therapy
because patients receiving crystalloid volume replacement therapy only showed a
CVP of 6.2 mmHg.

3 Volunteers (77 kg) before and after removal of 900 mL of blood.
4 Acute isovolemic hemodilution in volunteers down to a Hb concentration of 5 g/dL.
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An earlier attempt [344] at establishing a correlation with CVP and
additionally with CO and MAP in critically ill patients with a wide vari-
ety of conditions failed despite the availability of over 1,500 blood vol-
ume measurements.

A current conclusion would therefore appear to be justified [124]: There
has never been a correlation between the static CVP and the circulating
blood volume, and only extreme values, if any, might be a good indica-
tor of a patient’s hemodynamic status. Dynamic parameters such as
pulse pressure variation (PPV) and stroke volume variation (SVV) or res-
piratory variations in the pulse oxymeter plethysmogram should be
used preferentially. The following conclusion can be drawn:

“Dynamic parameters should be used preferentially to static parameters
to predict fluid responsiveness in ICU patients.” [252].

7.6.2. CVP Dynamics (CVP Titration)

It was realized early on that CVP, basically a static parameter, can also
be interpreted in dynamic terms: Hypovolemia is diagnosed by chal-
lenging the intravascular compartment into producing a CVP response
through the administration of volume boluses, or i.e. volume titration
of CVP until it responds with increasing pressures. However, the original
suggestion [408] – CVP titration with 500–4,000 mL until an abrupt
increase in CVP is produced – was doomed to failure because crystalloid
fluids were used for titration, only 20% of which remains within the
intravascular space.



69

Later suggestions invariably referred to the use of a colloid volume
bolus of 200–250 mL (6% HES or 3.5% GEL) designed to produce an
increase in CVP by 2–3 mmHg within approximately 10 minutes in the
absence of hypovolemia [274, 296, 383, 389]. This intervention was to
be repeated until a positive response would be obtained. If the CVP
increase is greater than 5 mmHg, volume administration has to be
stopped [383].

This approach essentially measures the compliance of the entire low pressure
system; Table 6 shows the results of such measurements in humans. The fluids
used included blood, albumin 5%, and colloid fluids. After elimination of one out-
lier [319], the values are surprisingly close to each other, the mean across 13 refs.
being 168 mL/mmHg. The values obtained when using crystalloid solutions with
450–1,000 mL are substantially greater, as expected, i.e., much larger volumes
are needed to produce the same increase in CVP.

The following recommendation can be deduced for CVP titration, i.e.
the dynamic interpretation of CVP: To do a hypovolemia challenge, a
colloid bolus of 500 mL (3 x 168 mL) should be administered as many
times as is necessary to produce a CVP increase by 3 mmHg. This is
quite similar to the suggested use of a 200–250 mL bolus, but is based
on a large number of measurements. “Challenging the intravascular
compartment: Iteratively repeating a 200- to 500-ml fluid bolus in
patients with oliguria, tachycardia, or hypotension.” [236].

It also emerges from Table 6 that the same bolus of 500 mL of blood or
colloid produces a 15-mmHg increase in MAP – making for rational
volume titration of MAP.
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Table 6:

Measurements of the compliance of the human low pressure system
(�V/�P, ml/mmHg), rounded off to 5 or 0 – change in CVP (mmHg)
following volume administration (mL) according to various authors.
Where a differentiation was made between responders and nonrespon-
ders, only the responder values were used.

Author Approach Compliance Change
(ml/mmHg) MAP (%)

Blood
Gauer (1956) –6.5/+8.1 mL/kg 195

Echt (1974) +/–500 mL 175

Cheung (1994) –1.75 mL/kg 140

(Riddez [1997] –900 mL 360)

Lattik (2002) –211 mL 115

+176 mL 195

Kramer (2004) +500 mL 165 +20

Albumin 5%
Calvin (1981) +250 mL 250

HES 6%/10%
Michard (2000) +500 mL 6% 165 +16

Lattik (2002) +500 mL 10% 150

Michard (2003) +500 mL 6% 165 +17

Osman (2007) + 500 mL 6% 165

GEL 3.5%
Reuter (2002) +580 mL 3.5% 155 +14

Preisman (2005) +500 mL 3.5% 145 +13

MW (n = 13) 168 (mL/mmHg) +16% (~15 mmHg)

Crystalloids
Rackow (1983) +3.7 L 0.9% NaCl 845

Riddez (1997) +1.8 L RA 460

Kumar (2004) +3.0 L 0.9% NaCl 1,000
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Conclusion: Provided it is measured correctly, the CVP can provide
the following diagnostic clues: If the CVP is less than the target
value (of 5 mmHg), the presence of hypovolemia is safe to assume,
but reaching the target (CVP >10 mmHg) is not a guarantee for an
adequate preload. To verify hypovolemia (CVP <5 mmHg), a colloid
bolus of 500 mL can be administered until a 3-mmHg increase in
CVP is produced. 

7.6.3. Dynamic Parameters Downstream of the Heart

Optimization of dynamic parameters such as stroke volume or cardiac
output on the basis of measurements of dynamic parameters such as
stroke volume variation (SVV) or pulse pressure variation (PPV), or res-
piratory variations in pulse pressure (pulse pressure difference, dPP) or
in the pulse oxymeter plethysmogram is currently being discussed as a
preferred approach. While some of these methods, such as PPV, show
high sensitivity and specificity for fluid responsiveness [194], adequate
validation during constant PEEP is still being questioned [28]. The
future will show whether these methods find their way into clinical
routine procedures.

7.7. Is There a Particular Level of Volume Loss That Should
Trigger a Switch From Stop Gap Crystalloid Fluid Replace-
ment to Genuine Volume Replacement with Colloids?

Animal studies have described the pathophysiological reactions to
acute blood loss [45].

When splenectomized conscious dogs have 10%, 20% or 30% of their blood vol-
ume removed within 3 minutes, BV normalization within the next 24 hours is
100%, 75%, and 60%, respectively. The fluid shift from the intravascular into the
extravascular compartment resulting from hormone-induced hyperosmolality
causes the blood volume to be replenished with a concomitant decrease in COP.
Normalization of the plasma protein concentration (the most essential response)
and hence of COP is 80% complete within 24 hours after a blood loss of 30%.
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This means that blood loss up to 15% of total blood volume is com-
pletely replaced within 24 hours even with no fluid intake or infusion.

Findings in humans are essentially identical.

Healthy volunteers subjected to experimental hypovolemia experienced a shift of
500 to 700 mL of fluid from the extravascular to the intravascular compartment
within 5 to 10 minutes; this process has been called “autotransfusion” [207, 225].
After removal of 645 mL of blood (12% of BV), 250 mL, or approximately 40% of
the blood loss, was replaced with volume moved from the EVFV [263]. Removal of
900 to 1,000 mL of blood (18% to 20% of BV) can, of course, be isovolemically
compensated by replacement with 5% human albumin in a ratio of 1:1, but this
can also be achieved with RL or RA in a ratio of 1: 2 or 1: 2.5, respectively,
because the intravascular albumin concentration returns to normal within the
subsequent 24 hours (both via synthesis and a shift from the extravascular com-
partment) [301, 319]. The hormone-induced hyperosmolality in shock patients
(see above) contributes toward restoration of extracellular and plasma volume
[37, 119, 171].

The level of blood loss that should trigger the switch from optional
crystalloid extracellular fluid delivery for volume replacement to actual
colloid intravascular volume replacement can thus be put at approxi-
mately 15% of total blood volume, or approximately 750 mL: Blood loss
up to 15% of BV (approximately 750 mL) can optionally still be
replaced with crystalloid balanced solutions, while blood loss in excess
of 15% of BV should always be replaced with colloid balanced solu-
tions. Major blood loss must always be replaced with balanced colloids.
Where true volume replacement is required, crystalloids should always
be used with caution: “Crystalloids should be kept to a minimum, espe-
cially as the complications are now well recognized” [337].
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8. Differentiation Between Volume Replacement Therapy and
Blood Therapy

The limitation of any volume replacement therapy is reached once
hemodilution has reduced the oxygen carrying capacity of the blood to
the point where organs and tissues can no longer be adequately sup-
plied with O2. This limit is currently thought to be reached at an Hb
concentration of approximately 7 g/dL in patients with no apparent
heart disease. However, if strict normovolemia can be ensured during
volume replacement therapy, Hb concentrations as low as 3 g/dL can be
tolerated, especially with concomitant hyperoxia [417]. Examples
include acute isovolemic hemodilution down to a cHb of 5 g/dL in
healthy volunteers [402] or intraoperative normovolemic hemodilution
with hyperoxia down to a cHb of 3 g/dL [109]. However, this requires
the absence of any additional disruptions of the electrolyte or acid-base
balance which might disrupt pure volume replacement therapy.
Numerous colloidal volume replacement fluids are nowadays available
for the treatment of hypovolemia, including natural colloids (human
albumin, HA) and synthetic colloids (dextran, DEX; gelatin, GEL; hydrox-
yethyl starch, HES). While there is a plethora of publications on this
issue, the choice of the “optimal” colloid is more controversial than
ever.

8.1. Volume Replacement Therapy with Natural Colloids (HA)

Of the commercially available human albumin solutions, only 5%
isooncotic HA solutions can reasonably be considered for use in volume
replacement therapy. Although they are obtained from pooled plasma,
modern albumin preparations are considered “immunologically” safe
because of the methods used in their manufacturing process. Even a
recent large 28-day multicenter trial in 7,000 patients showed that HA
4% (Na 140, Cl 128, octanoate 6.4 mmol/L) and NaCl 0.9 % (normal
saline, NS) were essentially equivalent; this means that no advantage
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could be established for albumin [108]. Data analysis showed, however,
that apparently neither the total volume infused over 4 days nor the
relative proportions of HA or NS provided any clues as to the effective-
ness of the volume effect of the two study solutions, since the total
volumes infused were virtually identical and, therefore, both the pro-
portions and differences in volumes of the study drugs were too small
[411]. Apart from producing hyperchloremia, another important criti-
cism leveled at current HA preparations in NaCl solution would appear
to be the fact that the functionally important negative charge of HA is
eliminated with relatively high concentrations of octanoate, caprylate
or tryptophanate (metabolizable bases) for reasons of solution stability.

Conclusion: The use of HA for volume replacement cannot current-
ly be recommended because albumin has no evidence-based advan-
tages over the less expensive synthetic colloids; albumin, being lim-
ited by its high price, is therefore rendered expendable as a volume
replacement fluid [411].

8.2. Volume Replacement Therapy with Synthetic Colloids 
(DEX, GEL, HES)

The usual synthetic colloid assessment criteria include the concentra-
tion (% (w/v) or g/L) of the colloid in solution; the synthetic colloid’s
molecular weight (MW); parameters of molar substitution; maximum
(initial) volume effect (MVE) in percent of the volume infused; volume
effect duration (VED), defined as the time during which the infused vol-
ume shows at least 100% intravascular effectiveness; and volume
effect half-life (VEHL), defined as the time during which the infused
volume shows at least 50% intravascular effectiveness [411].

DEX solutions are nowadays hardly used any longer in Europe, except in
the Nordic countries. This unpopularity is mainly due to their high aller-
genic potency and substantial inhibition of platelet aggregation.
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Among the HES products, the isooncotic 6% solution with a MW of
130 kD (degree of substitution (DS), 0.4) is nowadays preferred over
higher MW HES preparations; 6% HES 130/0.4 in 0.9% NaCl solution
has an MVE of 120%, a VED of 4 hours, and a VEHL of 7 hours [411].
Manufacturers of 6% HES preparations in balanced solution ideally
manage to supply an essentially balanced solution. If this is not
achieved, the use of such solutions is limited by the their more or less
pronounced hypotension hypotonicity they produce and/or the absence
of physiological calcium.

Two typical intraoperative studies are presented for HES in balanced
solution: Patients assigned to two groups – one treated with HES in
0.9% NaCl solution and the other with HES in balanced solution –
experienced dilutional acidosis (BE decrease, 7 mmol/L) with hyper-
chloremia (chloride concentration, 115 mmol/L) in the former group,
but not in the latter group (BE increase, 1.2 mmol/L; chloride concen-
tration, 108 mmol/L) [406]. When both the perioperative crystalloid
fluid and colloid (HES) volume replacement regimen were completely
switched from 0.9% NaCl to a balanced solution regimen, the latter
prevented the development of any intraoperative and postoperative
disruptions of the electrolyte and acid-base balance, and there was
neither hyperchloremia (117 mmol/L) nor dilutional acidosis (BE 
–5 mmol/L) [35] – a significant benefit for the physician.

The currently most popular GEL preparation is 4% modified fluid gela-
tin solution (MW 30 kD) with an MVE of 100%, a VED of 1.5 hours, and
a VEHL of 5 hours [411]. GEL preparations formulated in an NaCl carri-
er solution are clearly hypotonic. A recently introduced GEL preparation
formulated in an almost balanced solution is, unfortunately, also clear-
ly hypotonic. It would be desirable to have a GEL product formulated in
an isotonic, balanced solution.
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Over HES and DEX, GEL has the theoretical advantage of being a
charged molecule (like albumin). This results in at least two benefits: (1)
Gelatin can coat all blood cells with a thin film, affording them
mechanical protection; and (2) the negative charge can be used to
lower the chloride content of an IV fluid (replacement of 20 mmol/L of
plasma proteinate anions).

The following limitations of the volume effectiveness of HES and GEL
preparations merit consideration: 

� Practically all experience with HES products is from studies of
unbalanced, hyperchloremic preparations. This means that part of
the colloid effect might be due to the antidiuretic effect of hyper-
chloremia.

� Most experience with current GEL preparations is based on unbal-
anced, hypotonic products which might be associated with
increased diuresis and hence increased excretion.

8.2.1. Specific Indication for Use: Erythrocyte Protection 

Whenever red blood cells come into contact with coarse surfaces, such
as in the heart-lung machine, kidney replacement therapies (hemodial-
ysis, hemofiltration) or automated intraoperative autotransfusion using
cell savers, there is a risk of mechanically altering erythrocytes (and
platelets) or even causing hemolysis. Experience has shown that a min-
imum concentration of approximately 1% albumin suffices to coat and
adequately protect red blood cells. Highly effective protection of ery-
throcytes against mechanical stress is achieved very elegantly with
gelatin preparations, while NS has quite the opposite effect, i.e., it
increases the hemolysis rate [363, 365].
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8.2.2. Specific Indication for Use: Hyperoncotic Solutions

Hyperoncotic solutions, such as 10% HES (MW 130 kD) with an initial
MVE of approximately 150%, are recommended for “one-off” use in
emergency medicine. Such a hyperoncotic solution is required to
achieve the fastest possible restoration of the IVFV in acute (rather
than chronic), life-threatening hypovolemia, also drawing on intersti-
tial fluid reserves. However, this approach is only viable if an adequate
interstitial and/or intracellular fluid volume is available for fluid mobi-
lization. 

The advantage of this acute treatment of hypovolemia is that rapid
physiological volume regulation is supported – i.e., fluid is shifted from
the extravascular compartment into the intravascular compartment
with a fluid that has a physiological composition including HCO3,
except for albumin. Unlike the physiological response with COP reduc-
tion, infusion with a hyperoncotic IV fluid ensures that this volume
shift is supported while maintaining COP. Use over several days – as
reported in one study [42] – is, of course, contraindicated [412]. When
using this hyperoncotic fluid, preparations in a balanced solution are
obviously preferable to an NaCl-based solution.

8.2.3. Specific Limitation – Renal Function

Evidently at least 6% HES 200/0.62, compared with 3% GEL 30, had an
adverse impact on renal function in patients with severe sepsis and
septic shock [338]. The renal injury data generated in a recent study of
10% HES 200/0.5 in sepsis patients [42] cannot be used because that
study substantially overdosed patients by infusing them with a hyper-
oncotic, higher MW HES in hyperchloremic solution for several days
[412].
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Still, these are clinically significant findings that merit further atten-
tion, and should be clarified in carefully designed studies of 6% HES
130/0.4 in balanced solution.

8.3. Hemotherapy Using Packed Red Cells or Whole Blood

A review of the current literature reveals that the transfusion of
erythrocytes in the form of packed red cells (PRCs) is being viewed with
an increasingly critical eye. This stance has been succinctly put in the
title of a 2008 editorial: “New blood, old blood, or no blood?” [3].

This critical view arises from evidence suggesting a correlation between
patient mortality and the number and age of transfused units of PRCs,
and the arguments for or against the use of PRCs or whole blood.
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Figure 12: Mortality (%) in 14,467 patients from 4 studies [64, 178, 190,
384] following transfusion of PRC units.



The number of transfused PRC units shows a strong association with
patient mortality, as demonstrated in Figure 12 for almost 15,000
patients from 4 studies, but no causal relationship can be deduced from
this.

Indeed, many authors have claimed that transfusion is a strong inde-
pendent predictor of mortality, and this applies to patients with blunt
liver trauma [324] or trauma [231], heart surgery [273] or acute coro-
nary syndrome patients [310], and those undergoing CABG surgery [99,
199].

The age of transfused PRC units was also shown to be strongly associa-
ted with patient mortality (Figure 13).
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Figure 13: In-hospital mortality (%) among 321 reoperated cardiac sur-
gery patients as a function of the age (days) of transfused
PRCs (mean 5.2 ± 4.2 PRC units) [25].
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The impact of PRC age on mortality has also been demonstrated for septic ICU
[302] and critically ill patients [235, 369]. This finding has not been confirmed by
other authors; the number of PRC units they transfused was probably too low to
detect this effect: 2 [393, 394], 3 [410], 4 [379, 380] or max. 6 PCR units [209,
273]. If, for example, about 3,000 patients each are only given 2 units of PCRs
after cardiac surgery, a difference in mortality is unlikely to be detected, since
one-year mortality was 7.4% with 11-day-old PRCs vs. 11.0% with 20-day-old
PRCs [191].

Die Frage, ob es sich hierbei um einen kausal begründbaren Zusammen-
hang handelt, soll wie folgt hinterfragt werden.

The question of whether a causal relationship can be established for the
observed association will now be explored:

PRCs have long been known to show a base deficit even at the time of
preparation, and theoretically this must be approximately 20 mmol/L,
since the bicarbonate present in blood (20 mmol/L) is almost complete-
ly eliminated during the production process [364, 414].

During storage at 4°C for a maximum of 42 days (6 weeks), this base
deficit increases again because the erythrocytes’ anaerobic metabolism
with the formation of lactic acid continues. Measurements [414] show-
ing this are presented in Figure 14.

This rise in lactate levels in PRC units ranges from approximately 0.6
[339, 364] to 1 mmol/L/day [414] up to approximately 3 weeks (these
data refer to mmol/L of total PRCs, rather than to the plasma of PRCs
alone). Fresh PRCs therefore have a BD of 20 mmol/L, and 20-day-old
PRCs a BD of 40 mmol/L. 

20-day-old PRCs are considerd because this age is approximately the
mean age of transfused PRCs for about 90,000 units from 3 studies
(Western Europe, 16.2 ± 6.7; the Netherlands, 19.4 ± 7.0; United States,
21.2 ± 11.4) [67, 304, 384], or about half the maximum shelf life. This
means that patients transfused with only 3 units of PRCs (approximate-
ly 1 L) are given 40 mmol of H+ ions, or roughly the amount the kidneys
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normally need to eliminate per day (50 mmol). If liver function is intact
– which it rarely is in shock – half of this acid load can be converted
hepatically. If it is not, a patient (75-kg individual, 15 L ECFV) trans-
fused with, say, 7 units of PRCs has a base deficit of 6 mmol/L forced
upon them, rather than as little as 1 mmol/L, as has been claimed [16].

The acid-base status of classical whole blood is described here for com-
parison:

Whole blood shows a baseline BE of approximately –15 mmol/L (see
Figure 14) and, unlike PRCs, contains most of the alkalizing citrate 
(20 mmol/L) with a metabolic activity of 60 mmol/L. Fresh whole blood
thus has a BEpot of +45 mmol/L, and, therefore, is a strongly alkalizing
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Figure 14: Negative base excess (mmol/L) during storage of packed red
cell (PRC) or whole blood (WB) units with and without leuko-
cyte depletion [414].
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blood product. During 3 weeks’ storage, its BE increases, as a result of
anaerobic metabolism, by approximately 0.7 mmol/L/day from 15 to
–30 mmol/L [311, 414]. The resulting product is one that primarily caus-
es acidosis in the patient (BE –30 mmol/L) and secondarily – if the
patient’s liver function is intact – alkalosis (BEpot +30 mmol/L).

This interpretation cogently explains published findings from the Viet-
nam War [63]. Fresh whole blood shows a base deficit of 20–25 mmol/L,
which increases to 33–40 mmol/L after 15–22 days. Whole blood stored
for the latter period of time is used most often: When a patient is
transfused with approximately 10 units of whole blood in approximate-
ly 2 hours, their BE remains practically constant; it is about halved (i.e.,
improved) only if the baseline BE was approximately –15 mmol/L; when
a patient is infused with approximately 30 units of whole blood in
approximately 8 hours, the BE remains practically constant; it is practi-
cally normalized only if the baseline BE was approximately –15 mmol/L.

It has thus been demonstrated that the alkalizing effect predominates
in approximately 3-week-old whole blood samples, depending on the
number and rate of the transfusions, and this is considered a definite
advantage.

The debate in the 1970s about prophylactic bicarbonate buffering dur-
ing transfusion can thus be plausibly explained: The acid-base status
following transfusion of whole blood is extremely variable, as expected,
and prophylactic administration of bicarbonate is a practice that
should not be adopted [343] even when a transfusion must be adminis-
tered very rapidly [255].

The balance between the acidifying BE (production process and forma-
tion of lactic acid) and the potentially alkalizing BEpot (effect of cit-
rate) changes during storage of whole blood: A BE of –15 and a BEpot
of +45 mmol/L on day 0 means a highly alkalizing preparation; a BE of
–30 and a BEpot of +30 mmol/L on day 21 (3 weeks) means a mildly
alkalizing product, depending on a patient’s liver function.
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The situation is a completely different one with PRCs because practi-
cally no alkalizing component is left, since as little as 3 mmol/L of cit-
rate remains in the PRC unit. 

The current debate about the potential merits of reintroduction of clas-
sical (leukocyte-depleted) whole blood tops off this interpretation
("Resuscitation with fresh whole blood and limited crystalloid" [156]):

Even though no advantages of autologous and fresh blood over cold
stored blood could be demonstrated in heart surgery [314], there are a
few publications that recommend the use of fresh, autologous whole
blood, especially in pediatric cardiac surgery, because it is clearly supe-
rior to blood component therapy for correction of coagulopathy [115]
and, therefore, significantly reduces blood loss [232]. Similar reports
are available for adults: bleeding that could not be stopped even after
many units of blood components (PRCs, platelet concentrate, FFP)
ceased in nearly all cases after transfusing patients with uncooled,
fresh whole blood [103].

In the military, fresh warm whole blood from “walking donors” has for
decades been considered the best product for use in shock due to major
blood loss [71], and the “walking donor pool” from volunteers has
recently been used most rapidly [130, 286].

Conclusion: Unlike treatment with balanced colloids, the transfu-
sion of PRCs has significant drawbacks because PRCs are liable to
increase acidosis and hence coagulopathy, thus causally maintaining
and perpetuating bleeding. The overriding goal in trauma patients is
therefore to prevent coagulopathy from acidosis (and hypothermia)
[16]; in battlefield medicine, prevention of acidosis is rightly given
precedence over correction [153].



84

8.4. Infusion- and Hemotherapy in Massive Hemorrhage

Massive hemorrhage is defined as loss or exchange of one blood volume
within 24 hours or transfusion of 4 PRC units within 1 hour. Massive
hemorrhage is the greatest challenge in making the right infusion and
blood therapy (hemotherapy) decision. 

As in patients with multiple injuries, subsequent mortality shows a
highly significant correlation with BE on hospitalization: In a subset of
3,275 patients (selected from a population of 14,240 patients), the
nature of the trauma determined subsequent mortality [375]; blunt
trauma and bullet wounds show similar values to multiple injuries,
while stab or flesh wounds do not (Figure 15).
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The “crux of coagulopathy” is frequently deplored in patients with mas-
sive injuries requiring massive transfusions [16].

The development of coagulopathy during massive transfusion in a
trauma patient depends on their base deficit: In one series, patients
with a BD of 15 mmol/L did not develop coagulopathy, while those with
a BD of 21.2 mmol/L did [68]; in another series, trauma patients with a
BD <14 mmol/L did not develop coagulopathy, while those with a BD 
>14 mmol/L did [262].

Among trauma patients requiring massive transfusions, survivors and
nonsurvivors can be differentiated by their BD (mmol/L) alone: 9.0 vs.
16.0 [120], 12.5 vs. 17.1 [61], 13.4 vs. 20.3 [107], and <20 vs. >20 [44],
i.e. BD between 12 and 18 mmol/L in a total population of over 300
patients.

Evident conclusion: The overriding goal in infusion and hemo-
therapy must be to avoid acidosis. 

The currently accepted transfusion approach to major hemorrhage is as
follows: first crystalloids, then colloids, then PRCs, and then plasma
(FFP) [358]. This regimen merits revision and should be improved as fol-
lows:

� First line Balanced colloids rather than crystalloids, aim for
normovolemia (IVFV), maintain normal BE;

� Second line Plasma for volume replacement plus clotting factors
in case of dilutional coagulopathy despite normal BE;

� Third line Transfusion of fresh PRCs if at all possible once the
cHb falls below a critical level.
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Clotting factors have the limitation that their effect depends on a nor-
mal BE. International recommendations for the use of recombinant fac-
tor VIIa (rFVIIa, NovoSeven) therefore define metabolic acidosis as an
exclusion criterion [243, 357]. The limit is defined as a base deficit of
12.5 mmol/L (or pH 7.20). The recommendation even urges users to
bring the pH “as near as possible to the physiological level” before using
the product [357]. The recommendation to give this product “in con-
junction with transfusion of 8–10 U of packed RBC,” is conterproduc-
tive since PRCs in fact maintain acidosis. As clotting activity depends
greatly on BE, there is reason to suspect that fibrinolysis and products
modifying it, including aprotinin (Trasylol) or tranexamic acid, are also
affected by BE. The fact that aprotinin had to be removed from the
market [106] may, in part, have been due to BE being an efficacy-limit-
ing factor.

Conclusion: The strategy of treating massive hemorrhage with mas-
sive transfusion evidently is a dead-end approach: The patient’s
metabolic acidosis causes coagulopathy, and massive transfusion
with PRCs – which are typically 20 days old – increases acidosis and
hence coagulopathy. The metabolic acidosis typically seen in trauma
patients should be prevented rather than put up with or treated
because, once it has developed, it is causally responsible for a risk of
bleeding that persists for hours. The best-bet first-line approach to
massive hemorrhage is therefore the use of balanced colloids.
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9. Special Considerations in Pediatric Patients

Infants and toddlers have the following unique features setting them
apart from school-age children and adults: their larger body surface
area relative to their body weight results in greater insensible water
loss and metabolic rates; their fluid turnover may be more than double;
their renal plasma flow and GFR are substantially lower; renal sodium
excretion is limited in the first few months of life; their urine may be
diluted to 30–50 mosmol/kg H2O, but it can only be concentrated to
approximately 800 mosmol/kg H2O; their glycogen reserves are smaller;
and their gluconeogenesis (mainly from lactate) capacity is insufficient.

These features translate into the following requirements for fluid
management in infants and toddlers: Close monitoring of the fluid
balance (by regular weighing) and the sodium and glucose concentra-
tions is necessary; the latter should be corrected with IV glucose once
the glucose concentration falls below 70 mg/dL (4 mmol/L). 

Starting in 1992, there have been numerous reports of deaths from
hyponatremic encephalopathy [11] – estimated at 15,000 per year in
the United States alone [14]. Investigator interest therefore soon focu-
sed on the corresponding perioperative infusion regimen. When treat-
ment of a specific form of viral encephalitis was associated with a 
large percentage of hyponatremic children (sodium concentration 
<132 mmol/L, osmolality <275 mosmol/kg H2O) with symptoms of
intracranial pressure increase and herniation [246], it was suspected
that these events might in fact be cases of iatrogenic hyponatremia
arising from the (routine) use of hypotonic infusion fluids: “the routine
use of hypotonic fluids in hospitalized children can be dangerous”
[268]. A high percentage of acute infusion-related hyponatremia was
also diagnosed retrospectively in Canada; the criterion used was a
decrease in the sodium concentration to <136 mmol/L within 48 hours
resulting in brain swelling and herniation [138]. The teaching point of
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this is that all hypotonic solutions should be replaced with isotonic
solutions in this clinical setting.

Subsequently, various authors came out in favor of using isotonic 0.9%
NaCl solution [267, 368]. This solution should have 5% glucose added
to it [90] although it had been demonstrated in infants long ago that
the addition of 2% glucose is quite sufficient to rule out any periopera-
tive hyperglycemia or hypoglycemia and increased lipolysis [279].

The observation of a high incidence of hyperchloremic acidosis in chil-
dren, presumably due to impaired renal chloride elimination, demon-
strated that, apart from sodium, chloride may also be a problematic
factor to reckon with [281].

Other authors favored restricting the infused volume over raising the
sodium concentration of infusion fluids [142, 143].

A different solution was preferred in France: Polyionique B66 contains
120 mmol/L of sodium and, therefore, has an osmolarity of as little as
256 mosmol/L which, with a glucose concentration of 50.5 mosmol/L, is
raised to a physiological level of 306.5 mosmol/L in vitro; the solution
also contains 20.7 mmol/L of lactate [30].

As recently as 2006, a survey among UK anesthesiologists revealed that
a huge majority perioperatively keep using the usual 4% glucose solu-
tion in 0.18% NaCl [397] – a solution claimed to be responsible for the
death of children in Northern Ireland in a 2007 TV documentary [360].

The debate about the optimal isotonic infusion fluid for pediatric
patients was concluded for the time being in a 2007 editorial [219]
demanding an isotonic solution with a sodium concentration very close
to the plasma level and the addition of glucose. The editorial closes
with the following appeal: “Medical companies, please provide us with
this special perioperative infusion fluid as it will definitely have the
potential of saving lives!” The recommended “golden compromise solu-
tion” with 0.9% glucose and 120 mmol/L of NaCl is, however, not
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accepted; a "fool proof” solution has been suggested instead [362]: an
isotonic solution with an electrolyte pattern that is as physiological as
possible, has acetate rather than lactate added to it, and has a glucose
concentration of 1%.



90

10. Summary & Conclusion

A balanced intravenous fluid with the attributes described in this book-
let, either as a colloid isotonic solution for volume replacement or a
crystalloid isotonic solution for fluid replacement, evidently renders
the following rather pessimistic opinion from 1999 [60] obsolete:
“Despite >20 years of animal and human studies, the optimal fluid for
resuscitation in a clinical situation remains unclear.”

A balanced solution that has the physiological electrolyte pattern of
plasma in terms of sodium, potassium, calcium, magnesium and chlo-
ride and their relative contributions toward osmolality, and a physio-
logical acid-base balance achieved with metabolizable anions to
replace bicarbonate, confers the following benefits:

� The same balanced solution could be used as a crystalloid or a colloid
solution for fluid replacement or volume replacement, respectively. 

� Infusion of such a balanced solution will – except in terms of volume
– produce no iatrogenic disruptions of the electrolyte balance, in
particular no hyperchloremia with renal vasoconstriction and
decreased diuresis, and hence no overhydration with compartment
syndrome and weight gain for several days.

� After infusion and anion metabolism, a solution with a BEpot of 0 ±

10 mmol/L has no effect on the patient’s acid-base balance and,
therefore, can cause neither acidosis nor alkalosis nor dilutional aci-
dosis, an iatrogenic disorder caused by bicarbonate dilution in the
entire extracellular space.

� Acetate has a number of significant advantages over other metabo-
lizable anions, especially over lactate, which should no longer be
used as a metabolizable anion.



91

� A strictly isotonic solution rules out the risk of development of cere-
bral edema, and this should be borne in mind in pediatric patients in
particular.

� Blood loss up to 15% of BV (approximately 750 mL) can optionally
still be replaced with crystalloid balanced solutions, while blood loss
in excess of 15% of BV should always be replaced with colloid bal-
anced solutions. 

� Colloids can maintain a physiological COP to prevent any edema,
especially pulmonary edema. Synthetic colloids such as gelatin and
HES are preferable to human albumin.

� Balanced fluid or volume management prevents the development of
acidosis and hence coagulopathy, which, along with hypothermia,
forms the lethal triad.

� Because of the risk of exacerbation of acidosis, the transfusion of
PRCs has significant drawbacks over the use of balanced colloids
because PRCs increase acidosis and hence coagulopathy and may
causally maintain hemorrhage. 

� The overriding goal of infusion and blood hemotherapy must be to
avoid acidosis. 
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Acronyms & Abbreviations

BBSA Burned body surface area
BE Base excess (base deficit BD)
BEpot Potential base excess
BV Blood volume (IVFV)
BW Body weight
CNS Central nervous system
COP Colloid osmotic pressure
CVP Central venous pressure
D5W 5% dextrose (glucose) solution in water
DBP Diastolic blood pressure
ECFV Extracellular fluid volume
ECS Extracellular space
EVFV Extravascular fluid volume
FFP Fresh frozen plasma
FPD Freezing point depression
GFR Glomerular filtration rate
HA Human albumin
HES Hydroxyethyl starch
IAP Intraabdominal pressure
ICFV Intracellular fluid volume
ICP Intracranial pressure
IVFV Intravascular fluid volume (BV)
MAP Mean arterial blood pressure
MFG Modified fluid gelatin
MW Molecular weight
PCP Pulmonary capillary pressure
PCWP Pulmonary capillary wedge pressure
PRC Packed red cells
PT Prothrombin time
PTT Partial thromboplastin time
PV Plasma volume
RA Ringer’s acetate
RL Ringer’s lactate
RQ Respiratory quotient
SBP Systolic blood pressure
TA Titration acidity
TBFV Total body fluid volume
WB Whole blood



* fever increases the fluid requirements  by 10 % per 1° above 37.5°C 

Intravenous fluid management
= infusion of crystalloids and colloids

IV fluids are used to replace fluid loss.
The nature and composition of the solution to be used depends on the target fluid compartment.

Dehydration (ECFV) (fluid loss)

hypertonic/
hypotonic
(osmolality outside
the normal range)

isotonic
(osmolality within
the normal range)

Oral fluid intake
not permitted or
not possible 

Maintenance therapy

Individualized
correction of
deficits

Infusion of
isotonic 
plasma-adapted
crystalloids

Adults:
1–2 mL/kg/hr
30 mL/kg/day

Children: 
1st hour: 
10 mL/kg/hr
Subsequent hours: 
5 mL/kg

Infusion of
isotonic 
plasma-adapted
crystalloids

yes no

< 10 ml/kg BW > 10 ml/kg BW

�

volume loss (BV) (blood loss)

administration of
isotonic
plasma-adapted 
crystalloids

administration of
isotonic
plasma-adapted 
colloids

dosage according
to the individual
extent of blood
loss and
hemodilution

transfusion 
trigger reached

yes

RBC / FFP /
thrombocytes

no
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